Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

On the matrices of central linear mappings

Hans Havlicek — 1996

Mathematica Bohemica

We show that a central linear mapping of a projectively embedded Euclidean n -space onto a projectively embedded Euclidean m -space is decomposable into a central projection followed by a similarity if, and only if, the least singular value of a certain matrix has multiplicity 2 m - n + 1 . This matrix is arising, by a simple manipulation, from a matrix describing the given mapping in terms of homogeneous Cartesian coordinates.

Page 1

Download Results (CSV)