The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Equivariant deformation quantization for the cotangent bundle of a flag manifold

Ranee Brylinski — 2002

Annales de l’institut Fourier

Let X be a (generalized) flag manifold of a complex semisimple Lie group G . We investigate the problem of constructing a graded star product on = R ( T X ) which corresponds to a G -equivariant quantization of symbols into twisted differential operators acting on half-forms on X . We construct, when is generated by the momentum functions μ x for G , a preferred choice of where μ x φ has the form μ x φ + 1 2 { μ x , φ } t + Λ x ( φ ) t 2 . Here Λ x are operators on . In the known examples, Λ x ( x 0 ) is not a differential operator, and so the star product μ x φ ...

Page 1

Download Results (CSV)