We study the simultaneously reachable subspace for two strings controlled from a common endpoint. We give necessary and sufficient conditions for simultaneous spectral and approximate controllability. Moreover we prove the lack of simultaneous exact controllability and we study the space of simultaneously reachable states as a function of the position of the joint. For each type of controllability result we give the sharp controllability time.

We study linear combinations of exponentials e^{iλ_nt} , λ_n ∈ Λ in the case where the distance between some points λ_n tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L^2 (0,T). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can...

We study boundary control problems for the wave, heat, and Schrödinger equations on a finite graph. We suppose that the graph is a tree (i.e., it does not contain cycles), and on each edge an equation is defined. The control is acting through the Dirichlet condition applied to all or all but one boundary vertices. Exact controllability in L₂-classes of controls is proved and sharp estimates of the time of controllability are obtained for the wave equation. Null controllability for the heat equation...

We study the simultaneously reachable subspace for two strings
controlled from a common endpoint. We give necessary
and sufficient conditions for simultaneous spectral and approximate
controllability. Moreover we prove the lack of simultaneous exact
controllability
and we study the space of simultaneously reachable states
as a function of the position of the joint. For each type of controllability
result we give the sharp controllability time.

Recently several papers have related the production of sampling and interpolating sequences for multi-band signals to the solution of certain kinds of Wiener-Hopf equations. Our approach is based on connections between exponential Riesz bases and the controllability of distributed parameter systems. For the case of two-band signals we derive an operator whose invertibility is equivalent to the existence of a sampling and interpolating sequence, and prove the invertibility of this operator.

We study the exact boundary controllability of two coupled one dimensional wave equations with a control acting only in one equation. The problem is transformed into a moment problem. This framework has been used in control theory of distributed parameter systems since the classical works of A.G. Butkovsky, H.O. Fattorini and D.L. Russell in the late 1960s to the early 1970s. We use recent results on the Riesz basis property of exponential divided differences.

Download Results (CSV)