The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 1 of 1

Showing per page

Order by Relevance | Title | Year of publication

Asymptotic behavior of the solutions to a one-dimensional motion of compressible viscous fluids

Shigenori Yanagi — 1995

Mathematica Bohemica

We study the one-dimensional motion of the viscous gas represented by the system v t - u x = 0 , u t + p ( v ) x = μ ( u x / v ) x + f 0 x v x ¨ , t , with the initial and the boundary conditions ( v ( x , 0 ) , u ( x , 0 ) ) = ( v 0 ( x ) , u 0 ( x ) ) , u ( 0 , t ) = u ( X , t ) = 0 . We are concerned with the external forces, namely the function f , which do not become small for large time t . The main purpose is to show how the solution to this problem behaves around the stationary one, and the proof is based on an elementary L 2 -energy method.

Page 1

Download Results (CSV)