Currently displaying 1 – 3 of 3

Showing per page

Order by Relevance | Title | Year of publication

On interval decomposition lattices

Stephan FoldesSándor Radeleczki — 2004

Discussiones Mathematicae - General Algebra and Applications

Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.

On distances and metrics in discrete ordered sets

Stephan FoldesSándor Radelecki — 2021

Mathematica Bohemica

Discrete partially ordered sets can be turned into distance spaces in several ways. The distance functions may or may not satisfy the triangle inequality and restrictions of the distance to finite chains may or may not coincide with the natural, difference-of-height distance measured in a chain. It is shown that for semilattices the semimodularity ensures the good behaviour of the distances considered. The Jordan-Dedekind chain condition, which is weaker than semimodularity, is equivalent to the...

Page 1

Download Results (CSV)