Displaying similar documents to “Invariant measures for the stable foliation on negatively curved periodic manifolds”

On a one-dimensional analogue of the Smale horseshoe

Ryszard Rudnicki (1991)

Annales Polonici Mathematici

Similarity:

We construct a transformation T:[0,1] → [0,1] having the following properties: 1) (T,|·|) is completely mixing, where |·| is Lebesgue measure, 2) for every f∈ L¹ with ∫fdx = 1 and φ ∈ C[0,1] we have φ ( T n x ) f ( x ) d x φ d μ , where μ is the cylinder measure on the standard Cantor set, 3) if φ ∈ C[0,1] then n - 1 i = 0 n - 1 φ ( T i x ) φ d μ for Lebesgue-a.e. x.

Constructing equivariant maps for representations

Stefano Francaviglia (2009)

Annales de l’institut Fourier

Similarity:

We show that if Γ is a discrete subgroup of the group of the isometries of k , and if ρ is a representation of Γ into the group of the isometries of n , then any ρ -equivariant map F : k n extends to the boundary in a weak sense in the setting of Borel measures. As a consequence of this fact, we obtain an extension of a result of Besson, Courtois and Gallot about the existence of volume non-increasing, equivariant maps. Then, we show that the weak extension we obtain is actually a measurable...

A Fatou-Julia decomposition of transversally holomorphic foliations

Taro Asuke (2010)

Annales de l’institut Fourier

Similarity:

A Fatou-Julia decomposition of transversally holomorphic foliations of complex codimension one was given by Ghys, Gomez-Mont and Saludes. In this paper, we propose another decomposition in terms of normal families. Two decompositions have common properties as well as certain differences. It will be shown that the Fatou sets in our sense always contain the Fatou sets in the sense of Ghys, Gomez-Mont and Saludes and the inclusion is strict in some examples. This property is important when...