Displaying similar documents to “ C * algebras of operators on a half-space”

Multidimensional weak resolvents and spatial equivalence of normal operators

Michał Jasiczak (2006)

Studia Mathematica

Similarity:

The aim of this paper is to answer some questions concerning weak resolvents. Firstly, we investigate the domain of extension of weak resolvents Ω and find a formula linking Ω with the Taylor spectrum. We also show that equality of weak resolvents of operator tuples A and B results in isomorphism of the algebras generated by these operators. Although this isomorphism need not be of the form (1) X ↦ U*XU, where U is an isometry, for normal operators it...

Index

(1997)

Banach Center Publications

Similarity:

Almost periodic and strongly stable semigroups of operators

Vũ Phóng (1997)

Banach Center Publications

Similarity:

This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators T n : n = 0 , 1 , . . . on a Banach space X (discrete one-parameter semigroups), one-parameter C 0 -semigroups T ( t ) : t 0 on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family...

Spectral approximation for Segal-Bargmann space Toeplitz operators

Albrecht Böttcher, Hartmut Wolf (1997)

Banach Center Publications

Similarity:

Let A stand for a Toeplitz operator with a continuous symbol on the Bergman space of the polydisk N or on the Segal-Bargmann space over N . Even in the case N = 1, the spectrum Λ(A) of A is available only in a few very special situations. One approach to gaining information about this spectrum is based on replacing A by a large “finite section”, that is, by the compression A n of A to the linear span of the monomials z 1 k 1 . . . z N k N : 0 k j n . Unfortunately, in general the spectrum of A n does not mimic the spectrum...