Displaying similar documents to “Entropy linearity and chain-recurrence”

The entropy conjecture for diffeomorphisms away from tangencies

Gang Liao, Marcelo Viana, Jiagang Yang (2013)

Journal of the European Mathematical Society

Similarity:

We prove that every C 1 diffeomorphism away from homoclinic tangencies is entropy expansive, with locally uniform expansivity constant. Consequently, such diffeomorphisms satisfy Shub’s entropy conjecture: the entropy is bounded from below by the spectral radius in homology. Moreover, they admit principal symbolic extensions, and the topological entropy and metrical entropy vary continuously with the map. In contrast, generic diffeomorphisms with persistent tangencies are not entropy expansive. ...

A note on the entropy of a doubly stochastic operator

Brunon Kamiński, José de Sam Lazaro (2000)

Colloquium Mathematicae

Similarity:

We investigate the properties of the entropy and conditional entropy of measurable partitions of unity in the space of essentially bounded functions defined on a Lebesgue probability space.

Quantum dynamical entropy revisited

Thomas Hudetz (1998)

Banach Center Publications

Similarity:

We define a new quantum dynamical entropy for a C*-algebra automorphism with an invariant state (and for an appropriate 'approximating' subalgebra), which entropy is a 'hybrid' of the two alternative definitions by Connes, Narnhofer and Thirring resp. by Alicki and Fannes (and earlier, Lindblad). We report on this entropy's properties and on three examples.

On the origin and development of some notions of entropy

Francisco Balibrea (2015)

Topological Algebra and its Applications

Similarity:

Discrete dynamical systems are given by the pair (X, f ) where X is a compact metric space and f : X → X a continuous maps. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications other conditions on X and f have been considered. For example X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded...

Entropy dimension and variational principle

Young-Ho Ahn, Dou Dou, Kyewon Koh Park (2010)

Studia Mathematica

Similarity:

Recently the notions of entropy dimension for topological and measurable dynamical systems were introduced in order to study the complexity of zero entropy systems. We exhibit a class of strictly ergodic models whose topological entropy dimensions range from zero to one and whose measure-theoretic entropy dimensions are identically zero. Hence entropy dimension does not obey the variational principle.