A disjointness theorem involving topological entropy

François Blanchard

Bulletin de la Société Mathématique de France (1993)

  • Volume: 121, Issue: 4, page 465-478
  • ISSN: 0037-9484

How to cite

top

Blanchard, François. "A disjointness theorem involving topological entropy." Bulletin de la Société Mathématique de France 121.4 (1993): 465-478. <http://eudml.org/doc/87674>.

@article{Blanchard1993,
author = {Blanchard, François},
journal = {Bulletin de la Société Mathématique de France},
keywords = {topological entropy; disjointness; standard cover; entropy pair; diagonal flow; minimal zero-entropy flows},
language = {eng},
number = {4},
pages = {465-478},
publisher = {Société mathématique de France},
title = {A disjointness theorem involving topological entropy},
url = {http://eudml.org/doc/87674},
volume = {121},
year = {1993},
}

TY - JOUR
AU - Blanchard, François
TI - A disjointness theorem involving topological entropy
JO - Bulletin de la Société Mathématique de France
PY - 1993
PB - Société mathématique de France
VL - 121
IS - 4
SP - 465
EP - 478
LA - eng
KW - topological entropy; disjointness; standard cover; entropy pair; diagonal flow; minimal zero-entropy flows
UR - http://eudml.org/doc/87674
ER -

References

top
  1. [AKM] ADLER (R.L.), KONHEIM (A.G.) and MCANDREW (M.H.). — Topological entropy, Trans. Amer. Math. Soc., t. 114, 1965, p. 309-319. Zbl0127.13102MR30 #5291
  2. [Au] AUSLANDER (J.). — Minimal flows and their extensions. — North-Holland Math. Studies 153, North-Holland, Amsterdam, 1988. Zbl0654.54027MR89m:54050
  3. [B] BLANCHARD (F.). — Fully positive topological entropy and topological mixing, Symbolic Dynamics and Applications (in honour of R.L. Adler), AMS Contemporary Mathematics, Providence, RI, 1992. Zbl0783.54033MR93k:58134
  4. [BL] BLANCHARD (F.) and LACROIX (Y.). — Zero-entropy factors of topological flows, to appear in Proc. AMS. Zbl0787.54040
  5. [DGS] DENKER (M.), GRILLENBERGER (C.) and SIGMUND (K.). — Ergodic theory on compact spaces, Lecture Notes in Math., t. 527, Springer, Berlin, 1976. Zbl0328.28008MR56 #15879
  6. [F] FURSTENBERG (H.). — Disjointness in ergodic theory, minimal sets, and a problem in diophantine approximation, Math. Systems Th., t. 1, 1967, p. 1-55. Zbl0146.28502MR35 #4369
  7. [GW] GLASNER (G.) and WEISS (B.). — Strictly ergodic, uniform positive entropy models, to appear in Bull. Soc. Math. France. Zbl0833.54022
  8. [HK] HAHN (F.) and KATZNELSON (Y.). — On the entropy of uniquely ergodic transformations, Trans. Amer. Math. Soc., t. 126, 1967, p. 335-360. Zbl0191.21502MR34 #7772
  9. [P] PETERSEN (K.). — Disjointness and weak mixing of minimal sets, Proc. Amer. Math. Soc., t. 24, 1970, p. 278-280. Zbl0188.55503MR40 #3522
  10. [We] WEISS (B.). — Topological transitivity and ergodic measures, Math. Systems Th., t. 5, 1971, p. 71-75. Zbl0212.40103MR45 #5987
  11. [Wi] WILLIAMS (S.). — Tœplitz minimal flows which are not uniquely ergodic, Z. Wahrscheinlichkeitsth. verw. Gebiete, t. 57, 1984, p. 95-107. Zbl0584.28007MR86k:54062

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.