Displaying similar documents to “Non-embeddability of general unipotent diffeomorphisms up to formal conjugacy”

Equidistribution of Small Points, Rational Dynamics, and Potential Theory

Matthew H. Baker, Robert Rumely (2006)

Annales de l’institut Fourier

Similarity:

Given a rational function ϕ ( T ) on 1 of degree at least 2 with coefficients in a number field k , we show that for each place v of k , there is a unique probability measure μ ϕ , v on the Berkovich space Berk , v 1 / v such that if { z n } is a sequence of points in 1 ( k ¯ ) whose ϕ -canonical heights tend to zero, then the z n ’s and their Gal ( k ¯ / k ) -conjugates are equidistributed with respect to μ ϕ , v . The proof uses a polynomial lift F ( x , y ) = ( F 1 ( x , y ) , F 2 ( x , y ) ) of ϕ to construct a two-variable Arakelov-Green’s function g ϕ , v ( x , y ) for each v . The measure μ ϕ , v is...

Special values of symmetric power L -functions and Hecke eigenvalues

Emmanuel Royer, Jie Wu (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

We compute the moments of L -functions of symmetric powers of modular forms at the edge of the critical strip, twisted by the central value of the L -functions of modular forms. We show that, in the case of even powers, it is equivalent to twist by the value at the edge of the critical strip of the symmetric square L -functions. We deduce information on the size of symmetric power L -functions at the edge of the critical strip in subfamilies. In a second part, we study the distribution of...

Sign changes of error terms related to arithmetical functions

Paulo J. Almeida (2007)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let H ( x ) = n x φ ( n ) n - 6 π 2 x . Motivated by a conjecture of Erdös, Lau developed a new method and proved that # { n T : H ( n ) H ( n + 1 ) < 0 } T . We consider arithmetical functions f ( n ) = d n b d d whose summation can be expressed as n x f ( n ) = α x + P ( log ( x ) ) + E ( x ) , where P ( x ) is a polynomial, E ( x ) = - n y ( x ) b n n ψ x n + o ( 1 ) and ψ ( x ) = x - x - 1 / 2 . We generalize Lau’s method and prove results about the number of sign changes for these error terms.