Displaying similar documents to “A distributed search algorithm for global optimization on numerical spaces”

Adaptive search heuristics for the generalized assignment problem.

Helena Ramalhinho Lourenço, Daniel Serra (2002)

Mathware and Soft Computing

Similarity:

The Generalized Assignment Problem consists of assigning a set of tasks to a set of agents at minimum cost. Each agent has a limited amount of a single resource and each task must be assigned to one and only one agent, requiring a certain amount of the agent's resource. We present the application of a MAX-MIN Ant System (MMAS) and a greedy randomized adaptive search procedure (GRASP) to the generalized assignment problem based on hybrid approaches. The MMAS heuristic can be seen as an...

Experiments with variants of ant algorithms.

Thomas Stützle, Sebastian Linke (2002)

Mathware and Soft Computing

Similarity:

A number of extensions of Ant System, the first ant colony optimization (ACO) algorithm, were proposed in the literature. These extensions typically achieve much improved computational results when compared to the original Ant System. However, many design choices of Ant System are left untouched including the fact that solutions are constructed, that real-numbers are used to simulate pheromone trails, and that explicit pheromone evaporation is used. In this article we experimentally...

MEMOTS: a memetic algorithm integrating tabu search for combinatorial multiobjective optimization

Thibaut Lust, Jacques Teghem (2008)

RAIRO - Operations Research

Similarity:

We present in this paper a new multiobjective memetic algorithm scheme called MEMOX. In current multiobjective memetic algorithms, the parents used for recombination are randomly selected. We improve this approach by using a dynamic hypergrid which allows to select a parent located in a region of minimal density. The second parent selected is a solution close, in the objective space, to the first parent. A local search is then applied to the offspring. We experiment this scheme with...

A review on the ant colony optimization metaheuristic: basis, models and new trends.

Oscar Cordón, Francisco Herrera, Thomas Stützle (2002)

Mathware and Soft Computing

Similarity:

Ant Colony Optimization (ACO) is a recent metaheuristic method that is inspired by the behavior of real ant colonies. In this paper, we review the underlying ideas of this approach that lead from the biological inspiration to the ACO metaheuristic, which gives a set of rules of how to apply ACO algorithms to challenging combinatorial problems. We present some of the algorithms that were developed under this framework, give an overview of current applications, and analyze the relationship...