Loops which are cyclic extensions of their nuclei
Edgar G. Goodaire, D. A. Robinson (1982)
Compositio Mathematica
Similarity:
Edgar G. Goodaire, D. A. Robinson (1982)
Compositio Mathematica
Similarity:
Lucien Clavier (2012)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We modify tools introduced in [Daly D., Vojtěchovský P., Enumeration of nilpotent loops via cohomology, J. Algebra 322 (2009), no. 11, 4080–4098] to count, for any odd prime , the number of nilpotent loops of order up to isotopy, instead of isomorphy.
Tuval Foguel (2000)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A family of loops is studied, which arises with its binary operation in a natural way from some transversals possessing a ``normality condition''.
A. R. T. Solarin, B. L. Sharma (1984)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: