The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Remarks on holomorphic vector fields on non-compact manifolds”

Holomorphic submersions from Stein manifolds

Franc Forstnerič (2004)

Annales de l’institut Fourier

Similarity:

We establish the homotopy classification of holomorphic submersions from Stein manifolds to Complex manifolds satisfying an analytic property introduced in the paper. The result is a holomorphic analogue of the Gromov--Phillips theorem on smooth submersions.

Holomorphic semigroups of holomorphic isometries

Edoardo Vesentini (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

A previous paper was devoted to the construction of non-trivial holomorphic families of holomorphic isometries for the Carathéodory metric of a bounded domain in a complex Banach space, fixing a point in the domain. The present article shows that such a family cannot exist if it contains a strongly continuous one parameter semigroup.

The image of a finely holomorphic map is pluripolar

Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)

Annales Polonici Mathematici

Similarity:

We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.

Linear Kierst-Szpilrajn theorems

L. Bernal-González (2005)

Studia Mathematica

Similarity:

We prove the following result which extends in a somewhat "linear" sense a theorem by Kierst and Szpilrajn and which holds on many "natural" spaces of holomorphic functions in the open unit disk 𝔻: There exist a dense linear manifold and a closed infinite-dimensional linear manifold of holomorphic functions in 𝔻 whose domain of holomorphy is 𝔻 except for the null function. The existence of a dense linear manifold of noncontinuable functions is also shown in any domain for its full...

On holomorphic maps into compact non-Kähler manifolds

Masahide Kato, Noboru Okada (2004)

Annales de l’institut Fourier

Similarity:

We study the extension problem of holomorphic maps σ : H X of a Hartogs domain H with values in a complex manifold X . For compact Kähler manifolds as well as various non-Kähler manifolds, the maximal domain Ω σ of extension for σ over Δ is contained in a subdomain of Δ . For such manifolds, we define, in this paper, an invariant Hex n ( X ) using the Hausdorff dimensions of the singular sets of σ ’s and study its properties to deduce informations on the complex structure of X .