Differential operators with non dense domain
G. Da Prato, E. Sinestrari (1987)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
G. Da Prato, E. Sinestrari (1987)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
G. Da Prato, M. Iannelli (1980)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jean-Pierre Aubin, Giuseppe Da Prato (1990)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
Tomás Caraballo Garrido (1991)
Extracta Mathematicae
Similarity:
The main aim of this paper is to study stochastic PDE's with delay terms. In fact, we prove existence and uniqueness of solutions (in Itô's sense) for a rather general type of stochastic PDE's with non-linear monotone operators and with delays.
Tomás Caraballo Garrido (1991)
Collectanea Mathematica
Similarity:
We state some results on existence and uniqueness for the solution of non linear stochastic PDEs with deviating arguments. In fact, we consider the equation dx(t) + (A(t,x(t)) + B(t,x(a(t))) + f(t)dt = (C(t,x(b(t)) + g(t))dwt, where A(t,·), B(t,·) and C(t,·) are suitable families of non linear operators in Hilbert spaces, wt is a Hilbert valued Wiener process, and a, b are functions of delay. If A satisfies a coercivity condition and a monotonicity hypothesis, and if B, C are Lipschitz...
Samy Tindel (2000)
Applicationes Mathematicae
Similarity:
We consider the equation du(t,x)=Lu(t,x)+b(u(t,x))dtdx+σ(u(t,x))dW(t,x) where t belongs to a real interval [0,T], x belongs to an open (not necessarily bounded) domain , and L is a pseudodifferential operator. We show that under sufficient smoothness and nondegeneracy conditions on L, the law of the solution u(t,x) at a fixed point is absolutely continuous with respect to the Lebesgue measure.
G. Da Prato, M. Iannelli, L. Tubaro (1982)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
G. Da Prato (1978)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: