Cyclic quasinormal subgroups of arbitrary groups
Stewart E. Stonehewer, Giovanni Zacher (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Stewart E. Stonehewer, Giovanni Zacher (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Federico Menegazzo (1978)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Roland Schmidt (2006)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Kuzennyi, N.F., Subbotin, I.Ya. (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
F. Szász (1956)
Fundamenta Mathematicae
Similarity:
Sándor Szabó (2010)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
It is a known result that if a finite abelian group of odd order is a direct product of lacunary cyclic subsets, then at least one of the factors must be a subgroup. The paper gives an elementary proof that does not rely on characters.
Weston, Kenneth (1967)
Portugaliae mathematica
Similarity:
Vlastimil Dlab (1960)
Czechoslovak Mathematical Journal
Similarity:
Corrádi, Keresztély, Szabó, Sándor (1997)
Beiträge zur Algebra und Geometrie
Similarity: