Displaying similar documents to “Compact flat manifolds with holonomy group 𝐙 2 𝐙 2 (II)”

Affinely equivalent complete flat manifolds

Michal Sadowski (2004)

Open Mathematics

Similarity:

Let E Aff(Γ,G, m) be the set of affine equivalence classes of m-dimensional complete flat manifolds with a fixed fundamental group Γ and a fixed holonomy group G. Let n be the dimension of a closed flat manifold whose fundamental group is isomorphic to Γ. We describe E Aff(Γ,G, m) in terms of equivalence classes of pairs (ε, ρ), consisting of epimorphisms of Γ onto G and representations of G in ℝm-n. As an application we give some estimates of card E Aff(Γ,G, m).

Factor representations of diffeomorphism groups

Robert P. Boyer (2003)

Studia Mathematica

Similarity:

We give a new construction of semifinite factor representations of the diffeomorphism group of euclidean space. These representations are in canonical correspondence with the finite factor representations of the inductive limit unitary group. Hence, many of these representations are given in terms of quasi-free representations of the canonical commutation and anti-commutation relations. To establish this correspondence requires a generalization of complete positivity as developed in...

Indecomposable representations for extended Dynkin quivers of type 𝔼̃₈

Dawid Kędzierski, Hagen Meltzer (2011)

Colloquium Mathematicae

Similarity:

We discuss the problem of classification of indecomposable representations for extended Dynkin quivers of type 𝔼̃₈, with a fixed orientation. We describe a method for an explicit determination of all indecomposable preprojective and preinjective representations for those quivers over an arbitrary field and for all indecomposable representations in case the field is algebraically closed. This method uses tilting theory and results about indecomposable modules for a canonical algebra...