The topological rationality of linear representations

Sylvain E. Cappell; Julius L. Shaneson

Publications Mathématiques de l'IHÉS (1982)

  • Volume: 56, page 101-128
  • ISSN: 0073-8301

How to cite


Cappell, Sylvain E., and Shaneson, Julius L.. "The topological rationality of linear representations." Publications Mathématiques de l'IHÉS 56 (1982): 101-128. <>.

author = {Cappell, Sylvain E., Shaneson, Julius L.},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {surgery theory; topologically equivalent linear representations; real representations; representations over cyclotomic fields},
language = {eng},
pages = {101-128},
publisher = {Institut des Hautes Études Scientifiques},
title = {The topological rationality of linear representations},
url = {},
volume = {56},
year = {1982},

AU - Cappell, Sylvain E.
AU - Shaneson, Julius L.
TI - The topological rationality of linear representations
JO - Publications Mathématiques de l'IHÉS
PY - 1982
PB - Institut des Hautes Études Scientifiques
VL - 56
SP - 101
EP - 128
LA - eng
KW - surgery theory; topologically equivalent linear representations; real representations; representations over cyclotomic fields
UR -
ER -


  1. [A] V. I. ARNOLD, Ordinary Differential Equations, Cambridge, MIT Press, 1973. Zbl0296.34001MR50 #13679
  2. [Ad] J. F. ADAMS, Lectures on Lie Groups, New York, Benjamin, Inc., 1969. Zbl0206.31604MR40 #5780
  3. [AB] M. ATIYAH and R. BOTT, A Lefschetz fixed point formula for elliptic complexes : II. Applications, Ann. of Math., 88 (1968), 451-491. Zbl0167.21703MR38 #731
  4. [AS] M. ATIYAH and I. SINGER, The index of elliptic operators, III, Ann. of Math., 87 (1968), 546-604. Zbl0164.24301MR38 #5245
  5. [Bre 1] G. BREDON, Representations at fixed points of smooth actions of compact groups, Ann. of Math., 89 (1969), 512-532. Zbl0162.27404MR39 #7628
  6. [Bre 2] G. BREDON, Introduction to compact transformation groups, New York, Academic Press, 1972. Zbl0246.57017MR54 #1265
  7. [CKP] C. CAMACHO, N. KUIPER, J. PALIS, The topology of holomorphic flows with singularity, Publ. Math. I.H.E.S., 48 (1979), 5-38. Zbl0411.58018MR80j:58045
  8. [CR] C. CURTIS and I. REINER, Representation theory of finite groups and associative algebras, New York, Interscience-Wiley, 1962. Zbl0131.25601MR26 #2519
  9. [CS 1] S. E. CAPPELL and J. L. SHANESON, Pseudo-free group actions I, Proc. of the Aarhus Topology Conference of 1978, Springer Lecture Notes in Math., 763 (1979), 395-447. Zbl0416.57020MR81d:57034
  10. [CS 2] S. E. CAPPELL and J. L. SHANESON, Linear Algebra and Topology, Bull. Amer. Math. Soc., New Series, 1 (1979), 685-687. Zbl0412.57030MR80f:57016
  11. [CS 3] S. E. CAPPELL and J. L. SHANESON, Nonlinear similarity of matrices, Bull. Amer. Math. Soc., New Series, 1 (1979), 899-902. Zbl0449.57012MR80m:57010
  12. [CS 4] S. E. CAPPELL and J. L. SHANESON, Nonlinear similarity, Ann. of Math., 113 (1981), 315-355. Zbl0477.57022MR83h:57060
  13. [CS 5] S. E. CAPPELL and J. L. SHANESON, Fixed points of periodic smooth maps, Proc. National Acad. of Sci. USA, 77 (1980), 5052-5054. Zbl0448.57018MR81m:57029
  14. [CS 6] S. E. CAPPELL and J. L. SHANESON, Fixed points of periodic differentiable maps (to appear). Zbl0507.57027
  15. [CS 7] S. E. CAPPELL and J. L. SHANESON, The geometry of linear representations of groups and subgroups (to appear in Amer. Jour. of Math.). Zbl0935.15011
  16. [CS 8] S. E. CAPPELL and J. L. SHANESON, Matrices, topology, and elementary number theory (to appear). 
  17. [CS 9] S. E. CAPPELL and J. L. SHANESON, Nonlinear similarity and linear similarity are the same in dimensions less than 6 (to appear). Zbl0935.15011
  18. [CS 10] S. E. CAPPELL and J. L. SHANESON, Class numbers and periodic smooth maps (to appear). Zbl0528.57032
  19. [DeR 1] G. de RHAM, Sur les nouveaux invariants topologiques de M. Reidemeister, International Conference of Topology (Moscow, 1935), Recueil Mathématique, Moscow, 1936, t. I (43), 737-743. Zbl0016.04501JFM62.0662.04
  20. [DeR 2] G. de RHAM, Reidemeister's torsion invariant and rotation of Sn, International Conf. on Differential Analysis, Bombay Colloquium of 1964, Oxford Univ. Press, 1964, 27-36. Zbl0145.44004MR32 #8355
  21. [DeR 3] G. de RHAM, S. MAUMARY, and M. A. KERVAIRE, Torsion et type simple d'homotopie, Lecture Notes in Math., 48, Springer-Verlag, 1967. Zbl0153.53901MR36 #5943
  22. [I] Ju. S. IL'IAŠENKO, Global and local aspects of the theory of complex differential equations, Proc. Int. Cong. of Math., Helsinki, 1978, 821-826. Zbl0434.34003
  23. [Ka] K. KAWAKUBO, Weyl group actions and equivariant homotopy equivalence, Proc. of Amer. Math. Soc., 80 (1980), 172-176. Zbl0443.57024MR81j:57022
  24. [Kla] B. KLARES, Classification topologique des n-tuples de champs de vecteurs holomorphes commutatifs sur Pn+1(C), Thèse, Université de Strasbourg, 1980, partie II. 
  25. [K 1] N. H. KUIPER, The topology of a solution of a differential equation on Rn, Proc. Int. Congress on Manifolds, Tokyo, 1973, 195-203. Zbl0308.34036
  26. [K 2] N. H. KUIPER, La topologie des singularités hyperboliques des actions de R2, Astérisque, 59-60 (1978), 131-150. Zbl0476.58015MR81g:58028
  27. [K 3] N. H. KUIPER, The topology of linear Cm-flows on Cn, to appear in the Proceedings of a Conference on Dynamical Systems, Rio de Janeiro, July 1981. 
  28. [KR] N. KUIPER and J. W. ROBBIN, Topological classification of linear endomorphisms, Inventiones Math., 19 (1973), 83-106. Zbl0251.58008MR47 #8567
  29. [L] S. LANG, Algebra, Addison-Wesley, 1965. Zbl0193.34701MR33 #5416
  30. [LW] C. LEE and A. WASSERMAN, On the groups JO(G), Memoirs Amer. Math. Soc., Vol. 2, Issue I, No. 159, Amer. Math. Soc., Providence, R. I., 1975. Zbl0323.55031MR51 #6808
  31. [M] J. MILNOR, Whitehead torsion, Bull. Amer. Math. Soc., 72 (1966), 358-426. Zbl0147.23104MR33 #4922
  32. [O] R. OLIVER, Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv., 50 (1975), 155-177. Zbl0304.57020MR51 #11556
  33. [Pe 1] T. PETRIE, The Atiyah-Singer invariant, the Wall groups Ln( , 1), and the function (tex + 1)/(tex - 1), Ann. of Math., 92 (1970), 174-187. Zbl0205.53802MR47 #7761
  34. [Pe 2] T. PETRIE, G-Surgery I-A survey, Springer Lecture Notes, 664 (1978), 197-233. Zbl0403.57003MR80g:57049
  35. [Pe 3] T. PETRIE, Three Theorems on Transformation Groups, Springer Lecture Notes, 763 (1979), 549-572. Zbl0419.57011MR82b:57031
  36. [P] H. POINCARÉ, Sur les courbes définies par les équations différentielles, OEuvres de H. Poincaré, Vol. I, Paris, Gauthier-Villars (1926). Zbl18.0314.01
  37. [R] M. G. ROTHENBURG, Torsion invariants and finite transformation groups, Symposia in Pure Math., XXXII, part I, 267-312, Amer. Math. Soc., 1978. Zbl0426.57013MR80j:57038
  38. [Sa] C. SANCHEZ, Actions of groups of odd order on compact, orientable manifolds, Proc. Amer. Math. Soc., 54 (1976), 445-448. Zbl0316.57022MR53 #11641
  39. [Sch] R. SCHULTZ, On the topological classification of linear representations, Topology, 16 (1977), 263-270. Zbl0367.55018MR58 #18449
  40. [Se] J.-P. SERRE, Représentations linéaires des groupes finis, Paris, Hermann (1967). Zbl0189.02603MR38 #1190
  41. [Sh] J. L. SHANESON, Wall's surgery obstruction groups for Z X G, Ann. of Math., 90 (1969), 296-334. Zbl0182.57303MR39 #7614
  42. [Sm] P. A. SMITH, New results and old problems in finite transformation groups, Bull. Amer. Math. Soc., 66 (1960), 401-415. Zbl0096.37501MR23 #A2880
  43. [Tr] P. TRACZYK, On the G-homotopy equivalence of spheres of representations, Math. Zeitschrift, 161 (1978), 257-261. Zbl0365.22014MR58 #13025
  44. [W 1] C. T. C. WALL, Surgery on compact manifolds, New York, Academic Press, 1970. Zbl0219.57024MR55 #4217
  45. [W 2] C. T. C. WALL, Classification of Hermitian forms, VI, group rings, Ann. of Math., 103 (1976), 1-80. Zbl0328.18006MR55 #5720

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.