The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Totally inert groups”

On totally inert simple groups

Martyn Dixon, Martin Evans, Antonio Tortora (2010)

Open Mathematics

Similarity:

A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.

Groups with every subgroup ascendant-by-finite

Sergio Camp-Mora (2013)

Open Mathematics

Similarity:

A subgroup H of a group G is called ascendant-by-finite in G if there exists a subgroup K of H such that K is ascendant in G and the index of K in H is finite. It is proved that a locally finite group with every subgroup ascendant-by-finite is locally nilpotent-by-finite. As a consequence, it is shown that the Gruenberg radical has finite index in the whole group.