On totally inert simple groups
Martyn Dixon; Martin Evans; Antonio Tortora
Open Mathematics (2010)
- Volume: 8, Issue: 1, page 22-25
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topMartyn Dixon, Martin Evans, and Antonio Tortora. "On totally inert simple groups." Open Mathematics 8.1 (2010): 22-25. <http://eudml.org/doc/269299>.
@article{MartynDixon2010,
abstract = {A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.},
author = {Martyn Dixon, Martin Evans, Antonio Tortora},
journal = {Open Mathematics},
keywords = {Inert; Totally inert; Simple group; totally inert groups; infinite simple groups; minimal normal subgroups; subgroups of finite index; periodic groups},
language = {eng},
number = {1},
pages = {22-25},
title = {On totally inert simple groups},
url = {http://eudml.org/doc/269299},
volume = {8},
year = {2010},
}
TY - JOUR
AU - Martyn Dixon
AU - Martin Evans
AU - Antonio Tortora
TI - On totally inert simple groups
JO - Open Mathematics
PY - 2010
VL - 8
IS - 1
SP - 22
EP - 25
AB - A subgroup H of a group G is inert if |H: H ∩ H g| is finite for all g ∈ G and a group G is totally inert if every subgroup H of G is inert. We investigate the structure of minimal normal subgroups of totally inert groups and show that infinite locally graded simple groups cannot be totally inert.
LA - eng
KW - Inert; Totally inert; Simple group; totally inert groups; infinite simple groups; minimal normal subgroups; subgroups of finite index; periodic groups
UR - http://eudml.org/doc/269299
ER -
References
top- [1] Belyaev V.V., Inert subgroups in infinite simple groups, Sibirsk. Mat. Zh., 1939, 34(4), 17–23 (in Russian), English translation: Siberian Math. J., 1993, 34(4), 606–611
- [2] Belyaev V.V., Locally finite groups containing a finite inseparable subgroup, Sibirsk. Mat. Zh., 1993, 34, 23–41 (in Russian), English translation: Siberian Math. J., 1993, 34, 218–232
- [3] Belyaev V.V., Inert subgroups in simple locally finite groups, In: Finite and locally finite groups, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 471, 213–218, Kluwer Acad. Publ., Dordrecht, 1995 Zbl0838.20033
- [4] Belyaev V.V., Kuzucuoǧlu M., Seçkin E., Totally inert groups, Rend. Sem. Mat. Univ. Padova, 1999, 102, 151–156 Zbl0945.20022
- [5] Bergman G. M., Lenstra H. W. Jr., Subgroups close to normal subgroups, J. Algebra, 1989, 127(1), 80–97 http://dx.doi.org/10.1016/0021-8693(89)90275-5
- [6] Dixon M.R., Evans M. J., Smith H., Embedding groups in locally (soluble-by-finite) simple groups, J. Group Theory, 2006, 9, 383–395 http://dx.doi.org/10.1515/JGT.2006.026 Zbl1120.20030
- [7] Kegel O.H., Wehrfritz B.A.F., Locally finite groups, North Holland, Amsterdam, 1973
- [8] Neumann H., Varieties of groups, Springer-Verlag, NewYork, 1967
- [9] Olshanskii A.Yu., An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., 1980, 44(2), 309–321
- [10] Robinson D.J.S., Finiteness conditions and generalized soluble groups, Springer-Verlag, 1972 Zbl0243.20032
- [11] Robinson D.J.S., A course in the theory of groups, 2nd edition, Springer-Verlag, NewYork, 1996
- [12] Robinson D.J.S., On inert subgroups of a group, Rend. Sem. Mat. Univ. Padova, 2006, 115, 137–159 Zbl1167.20319
- [13] Zel’manov E.I., Solution of the restricted Burnside’s problem for groups of odd exponent, Math. USSR-Izv., 1991, 36(1), 41–60 http://dx.doi.org/10.1070/IM1991v036n01ABEH001946
- [14] Zel’manov E.I., Solution of the restricted Burnside problem for 2-groups, Mat. Sb., 1991, 182(4), 568–592 (in Russian), English translation: Math. USSR-Sb., 1992, 72(2), 543–565 Zbl0752.20017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.