Newton polygons and formal groups: Conjectures by Manin and Grothendieck.
Oort, Frans (2000)
Annals of Mathematics. Second Series
Similarity:
Oort, Frans (2000)
Annals of Mathematics. Second Series
Similarity:
Michael Rapoport (2001-2002)
Séminaire Bourbaki
Similarity:
Henry Brougham, Edward John Routh
Similarity:
Laureano F. Escudero (1983)
Qüestiió
Similarity:
Ioannis K. Argyros (2005)
Applicationes Mathematicae
Similarity:
The Newton-Kantorovich approach and the majorant principle are used to provide new local and semilocal convergence results for Newton-like methods using outer or generalized inverses in a Banach space setting. Using the same conditions as before, we provide more precise information on the location of the solution and on the error bounds on the distances involved. Moreover since our Newton-Kantorovich-type hypothesis is weaker than before, we can cover cases where the original Newton-Kantorovich...
Detlev W. Hoffmann (1994)
Manuscripta mathematica
Similarity:
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2013)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to nonlinear integral equations of mixed Hammerstein...
Foltyn, Ladislav, Vlach, Oldřich
Similarity:
To solve the contact problems by using a semismooth Newton method, we shall linearize stiffness and mass matrices as well as contact conditions. The latter are prescribed by means of mortar formulation. In this paper we describe implementation details.
José Antonio Ezquerro, Daniel González, Miguel Ángel Hernández (2012)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
From Kantorovich’s theory we present a semilocal convergence result for Newton’s method which is based mainly on a modification of the condition required to the second derivative of the operator involved. In particular, instead of requiring that the second derivative is bounded, we demand that it is centered. As a consequence, we obtain a modification of the starting points for Newton’s method. We illustrate this study with applications to ...
Rafał Ziobro (2015)
Formalized Mathematics
Similarity:
Solving equations in integers is an important part of the number theory [29]. In many cases it can be conducted by the factorization of equation’s elements, such as the Newton’s binomial. The article introduces several simple formulas, which may facilitate this process. Some of them are taken from relevant books [28], [14]. In the second section of the article, Fermat’s Little Theorem is proved in a classical way, on the basis of divisibility of Newton’s binomial. Although slightly redundant...
Ioannis Argyros (1999)
Applicationes Mathematicae
Similarity:
We use inexact Newton iterates to approximate a solution of a nonlinear equation in a Banach space. Solving a nonlinear equation using Newton iterates at each stage is very expensive in general. That is why we consider inexact Newton methods, where the Newton equations are solved only approximately, and in some unspecified manner. In earlier works [2], [3], natural assumptions under which the forcing sequences are uniformly less than one were given based on the second Fréchet derivative...