Displaying similar documents to “Isomorphic characterizations of Hilbert spaces by orthogonal series with vector valued coefficients”

Special symmetries of Banach spaces isomorphic to Hilbert spaces

Jarno Talponen (2010)

Studia Mathematica

Similarity:

We characterize Hilbert spaces among Banach spaces in terms of transitivity with respect to nicely behaved subgroups of the isometry group. For example, the following result is typical: If X is a real Banach space isomorphic to a Hilbert space and convex-transitive with respect to the isometric finite-dimensional perturbations of the identity, then X is already isometric to a Hilbert space.

Some embedding properties of Hilbert subspaces in topological vector spaces

Eberhard Gerlach (1971)

Annales de l'institut Fourier

Similarity:

A general theorem on Hilbert subspaces of dually nuclear spaces is proved, from which all previous results of K. Maurin and the writer on regularity of generalized eigenfunctions follow as simple corollaries. In addition some supplements to L. Schwartz’s work on Hilbert subspaces in spaces of smooth functions are given.

On the negative dependence in Hilbert spaces with applications

Nguyen Thi Thanh Hien, Le Van Thanh, Vo Thi Hong Van (2019)

Applications of Mathematics

Similarity:

This paper introduces the notion of pairwise and coordinatewise negative dependence for random vectors in Hilbert spaces. Besides giving some classical inequalities, almost sure convergence and complete convergence theorems are established. Some limit theorems are extended to pairwise and coordinatewise negatively dependent random vectors taking values in Hilbert spaces. An illustrative example is also provided.