The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Stability and genericity in dynamical systems”

Prolongations and stability in dynamical systems

J. Auslander, P. Seibert (1964)

Annales de l'institut Fourier

Similarity:

Les auteurs étudient la notion de prolongement au sens de T. Ura et ses relations avec la notion d’ensembles positivement invariants. La stabilité au sens de Liapounoff est équivalente à l’invariance par prolongement. Les auteurs dégagent ensuite la notion de “prolongements abstraits” et les notions de stabilité correspondantes; la stabilité absolue (associée au prolongement minimal transitif) et la stabilité asymptotique jouent un rôle important.

Ω-stability for maps with nonwandering critical points

J. Delgado, N. Romero, A. Rovella, F. Vilamajó (2007)

Fundamenta Mathematicae

Similarity:

Sufficient conditions for a map having nonwandering critical points to be Ω-stable are introduced. It is not known if these conditions are necessary, but they are easily verified for all known examples of Ω-stable maps. Their necessity is shown in dimension two. Examples are given of Axiom A maps that have no cycles but are not Ω-stable.

C¹ stable maps: examples without saddles

J. Iglesias, A. Portela, A. Rovella (2010)

Fundamenta Mathematicae

Similarity:

We give here the first examples of C¹ structurally stable maps on manifolds of dimension greater than two that are neither diffeomorphisms nor expanding. It is shown that an Axiom A endomorphism all of whose basic pieces are expanding or attracting is C¹ stable. A necessary condition for the existence of such examples is also given.

On absolute stability

Roger C. McCann (1972)

Annales de l'institut Fourier

Similarity:

Absolute stability of a compact set is characterized by the cardinality of a fundamental system of positively invariant neighborhoods.