Hyperbolic equations and irregularity
H. Komatsu (1980-1981)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
H. Komatsu (1980-1981)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Sudhanshu K. Ghoshal, Abha Ghoshal, M. Abu-Masood (1977)
Annales Polonici Mathematici
Similarity:
W. Mlak (1962)
Annales Polonici Mathematici
Similarity:
Michał Kisielewicz (1975)
Annales Polonici Mathematici
Similarity:
J. Kisyński (1970)
Colloquium Mathematicae
Similarity:
Avalishvili, G., Gordeziani, D. (1999)
Bulletin of TICMI
Similarity:
Carvalho e Silva, Jaime (1988)
Portugaliae mathematica
Similarity:
R. Krasnodębski (1970)
Colloquium Mathematicae
Similarity:
Romanov, V. G. (2003)
Sibirskij Matematicheskij Zhurnal
Similarity:
Nishitani, Tatsuo (2008)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 35L15, Secondary 35L30. In this paper we prove that for non effectively hyperbolic operators with smooth double characteristics with the Hamilton map exhibiting a Jordan block of size 4 on the double characteristic manifold the Cauchy problem is well posed in the Gevrey 6 class if the strict Ivrii-Petkov-Hörmander condition is satisfied.
Jan Dymara, Damian Osajda (2007)
Fundamenta Mathematicae
Similarity:
We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.
Reissig, Michael (1997)
Abstract and Applied Analysis
Similarity:
Mitsuru Sugimoto (1994)
Mathematische Zeitschrift
Similarity:
Kunihiko Kajitani, Yasuo Yuzawa (2006)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Similarity:
We discuss the local existence and uniqueness of solutions of certain nonstrictly hyperbolic systems, with Hölder continuous coefficients with respect to time variable. We reduce the nonstrictly hyperbolic systems to the parabolic ones and by use of the and the Banach scale method we construct a semi-group which gives a representation of the solution to the Cauchy problem.