The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “L’espace L 1 ^ E (suite et fin)”

Étude des projections de norme 1 de E ' ' sur E . Unicité de certains préduaux. Applications

Gilles Godefroy (1979)

Annales de l'institut Fourier

Similarity:

On étudie dans ce travail les projections de norme 1 du bidual E ' ' d’un espace de Banach E sur l’image canonique i E ( E ) de E dans E ' ' . On montre que dans un certain nombre de cas, il y a unicité de la projection de norme 1. On en déduit des théorèmes d’existence et d’unicité du prédual de E . On donne ensuite diverses applications, en particulier aux espaces dont la norme est différentiable sur un ensemble dense et aux espaces ne contenant pas 1 ( N ) .