Transition functions of Markov processes
John B. Walsh (1972)
Séminaire de probabilités de Strasbourg
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
John B. Walsh (1972)
Séminaire de probabilités de Strasbourg
Similarity:
Masao Nagasawa (1976)
Séminaire de probabilités de Strasbourg
Similarity:
Masao Nagasawa (1972)
Séminaire de probabilités de Strasbourg
Similarity:
Darling, R.W.R., Norris, J.R. (2008)
Probability Surveys [electronic only]
Similarity:
Vincent Vigon (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
(Homogeneous) Markov bridges are (time homogeneous) Markov chains which begin at a given point and end at a given point. The price to pay for preserving the homogeneity is to work with processes with a random life-span. Bridges are studied both for themselves and for their use in describing the transformations of Markov chains: restriction on a random interval, time reversal, time change, various conditionings comprising the confinement in some part of the state space. These bridges...
Fitzsimmons, P.J. (1998)
Electronic Journal of Probability [electronic only]
Similarity:
Michael I. Taksar (1987)
Séminaire de probabilités de Strasbourg
Similarity:
Maria Jankiewicz, T. Rolski (1977)
Applicationes Mathematicae
Similarity:
W. P. Cherry, R. L. Disney (1983)
Applicationes Mathematicae
Similarity:
Maria Jankiewicz (1978)
Applicationes Mathematicae
Similarity:
R. Magiera, R. Różanski (1985)
Banach Center Publications
Similarity: