(Homogeneous) markovian bridges
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 3, page 875-916
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] J. Bertoin. Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press, Cambridge, 1998. Zbl0938.60005MR1406564
- [2] J. D. Biggins. Random walk conditioned to stay positive. J. London Math. Soc. (2) 67 (2003) 259–272. Zbl1046.60066MR1942425
- [3] R. M. Blumenthal and R. K. Getoor. Markov Processes and Potential Theory. Pure and Applied Mathematics 29. Academic Press, New York–London, 1968. Zbl0169.49204MR264757
- [4] C. Dellacherie and P.-A. Meyer. Probabilités et potentiel. Chapitres IX à XI: Théorie discrète du potentiel. Publications de l’Institut de Mathématique de l’Université de Strasbourg XVIII. Actualités Scientifiques et Industrielles 1410. Hermann, Paris, 1983. Zbl0526.60001MR727641
- [5] J. L. Doob. Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85 (1957) 431–458. Zbl0097.34004MR109961
- [6] E. B. Dynkin. Boundary theory of Markov processes (the discrete case). Russian Math. Surveys 24 (1969) 1–42. Zbl0222.60048MR245096
- [7] W. Feller. An Introduction to Probability Theory and Its Applications, Vol. II, 2nd edition. Wiley, 1966. Zbl0155.23101MR210154
- [8] P. J. Fitzsimmons. On the excursions of Markov processes in classical duality. Probab. Theory Related Fields 75 (1987) 159–178. Zbl0616.60070MR885460
- [9] P. Fitzsimmons. Markov processes with identical bridges. Electron. J. Probab. 3 (1998). Zbl0907.60066MR1641066
- [10] P. Fitzsimmons, J. Pitman and M. Yor. Markovian bridges: Construction, Palm interpretation, and splicing. In Seminar on Stochastic Processes 101–134. Progress in Probability 33. Birkhäuser Boston, Boston, 1992. Zbl0844.60054MR1278079
- [11] S. Fourati. Vervaat et Lévy. Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 461–478. Zbl1074.60082MR2139029
- [12] R. K. Getoor and M. J. Sharpe. The Markov property at co-optional times. Z. Wahrsch. Verw. Gebiete 48 (1979) 201–211. Zbl0402.60066MR534845
- [13] R. K. Getoor and M. J. Sharpe. Excursions of dual processes. Adv. Math. 45 (1982) 259–309. Zbl0497.60067MR673804
- [14] J. Hoffmann-Jørgensen. Markov sets. Math. Scand. 24 (1969) 145–166. Zbl0232.60053MR256460
- [15] G. A. Hunt. Markoff processes and potentials. Illinois J. Math. 2 (1958) 151–213. Zbl0100.13804MR107097
- [16] G. A. Hunt. Markoff chains and Martin boundaries. Illinois J. Math. 4 (1960) 316–340. Zbl0094.32103MR123364
- [17] K. Itô. Poisson point processes attached to Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory 225–239. Univ. California Press, Berkeley, 1972. Zbl0284.60051MR402949
- [18] M. Jacobsen. Splitting times for Markov processes and a generalised Markov property for diffusions. Z. Wahrsch. Verw. Gebiete 30 (1974) 27–43. Zbl0288.60064MR375477
- [19] M. Jacobsen and J. M. Pitman. Birth, death and conditioning of Markov chains. Ann. Probab. 5 (1977) 430–450. Zbl0363.60052MR445613
- [20] O. Kallenberg. Foundations of Modern Probability, 2nd edition. Probability and Its Applications (New York). Springer, New York, 2002. Zbl0892.60001MR1876169
- [21] A. N. Kolmogorov. Zur Theorie der Markoffschen Ketten. Math. Ann. 112 (1936) 155–160. Zbl0012.41001MR1513044
- [22] B. Maisonneuve. Sytèmes régénératifs. Astérique 15. Société mathématique de France, 1974. Zbl0285.60049MR350879
- [23] P. A. Meyer, R. T. Smythe and J. B. Walsh. Birth and death of Markov processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability, Vol. III: Probability Theory 295–305. Univ. California Press, Berkeley, 1972. Zbl0255.60046MR405600
- [24] P. W. Millar. Zero–one laws and the minimum of a Markov process. Trans. Amer. Math. Soc. 226 (1977) 365–391. Zbl0381.60062MR433606
- [25] M. Nagasawa. Time reversions of Markov processes. Nagoya Math. J. 24 (1964) 177–204. Zbl0133.10702MR169290
- [26] J. Pitman and M. Yor. Itô’s excursion theory and its applications. Japan J. Math. 2 (2007) 83–96. Zbl1156.60066MR2295611
- [27] A. O. Pittenger and C. T. Shih. Coterminal families and the strong Markov property. Trans. Amer. Math. Soc. 182 (1973) 1–42. Zbl0275.60084MR336827
- [28] H. Rost. Markoff–Ketten bei sich füllenden Löchern im Zustandsraum. Ann. Inst. Fourier (Grenoble) 21 (1971) 253–270. Zbl0197.44206MR299755
- [29] E. Seneta. Non-Negative Matrices. An Introduction to Theory and Applications. Allen & Unwin, London, 1973. Zbl0278.15011MR389944
- [30] T. Simon. Subordination in the wide sense for Lévy processes. Probab. Theory Related Fields 115 (1999) 445–477. Zbl0944.60049MR1728917
- [31] H. Thorisson. Coupling, Stationarity, and Regeneration. Probability and Its Applications (New York). Springer, New York, 2000. Zbl1044.60510MR1741181
- [32] W. Vervaat. A relation between Brownian bridge and Brownian excursion. Ann. Probab. 7 (1979) 141–149. Zbl0392.60058MR515820
- [33] V. Vigon. Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf. Editions Universitaires Europeennes, also disposable on HAL and on my web page, 2002.
- [34] D. Williams. Decomposing the Brownian path. Bull. Amer. Math. Soc. 76 (1970) 871–873. Zbl0233.60066MR258130
- [35] W. Woess. Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics 138. Cambridge Univ. Press, Cambridge, 2000. Zbl0951.60002MR1743100