Introduction to Stochastic Field Theory
Francesco Guerra (1975)
Publications mathématiques et informatique de Rennes
Similarity:
Francesco Guerra (1975)
Publications mathématiques et informatique de Rennes
Similarity:
T. Barth, A. U. Kussmaul (1981)
Annales scientifiques de l'Université de Clermont. Mathématiques
Similarity:
M. Métivier, J. Pellaumail (1976)
Publications mathématiques et informatique de Rennes
Similarity:
Michał Kisielewicz (1997)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
The definition and some existence theorems for stochastic differential inclusions depending only on selections theorems are given.
Sridharan, V., Kalyani, T.V. (2005)
APPS. Applied Sciences
Similarity:
Svetlana Janković (1998)
Zbornik Radova
Similarity:
M. Métivier, J. Pellaumail (1977)
Publications mathématiques et informatique de Rennes
Similarity:
J. Gani (1966-1967)
Publications mathématiques et informatique de Rennes
Similarity:
Artstein, Zvi, Wets, Roger J.B. (1995)
Journal of Convex Analysis
Similarity:
Fabio Bagarello (2006)
Banach Center Publications
Similarity:
Ole E. Barndorff-Nielsen, Fred Espen Benth, Almut E. D. Veraart (2015)
Banach Center Publications
Similarity:
Ambit stochastics is the name for the theory and applications of ambit fields and ambit processes and constitutes a new research area in stochastics for tempo-spatial phenomena. This paper gives an overview of the main findings in ambit stochastics up to date and establishes new results on general properties of ambit fields. Moreover, it develops the concept of tempo-spatial stochastic volatility/intermittency within ambit fields. Various types of volatility modulation ranging from stochastic...
Michał Kisielewicz (1999)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.
Motyl, Jerzy (1995)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Z. Ivković, J. Vukmirović (1976)
Matematički Vesnik
Similarity:
Micha Kisielewicz (2003)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
The Girsanov's theorem is useful as well in the general theory of stochastic analysis as well in its applications. We show here that it can be also applied to the theory of stochastic differential inclusions. In particular, we obtain some special properties of sets of weak solutions to some type of these inclusions.