The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fragmented integral domains”

Maximal non-Jaffard subrings of a field.

Mabrouk Ben Nasr, Noôman Jarboui (2000)

Publicacions Matemàtiques

Similarity:

A domain R is called a maximal non-Jaffard subring of a field L if R ⊂ L, R is not a Jaffard domain and each domain T such that R ⊂ T ⊆ L is Jaffard. We show that maximal non-Jaffard subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim R = dim R + 1. Further characterizations are given. Maximal non-universally catenarian subrings of their quotient fields are also studied. It is proved that this class of domains coincides with the previous class when...

When is each proper overring of R an S(Eidenberg)-domain?

Noômen Jarboui (2002)

Publicacions Matemàtiques

Similarity:

A domain R is called a maximal "non-S" subring of a field L if R ⊂ L, R is not an S-domain and each domain T such that R ⊂ T ⊆ L is an S-domain. We show that maximal "non-S" subrings R of a field L are the integrally closed pseudo-valuation domains satisfying dim(R) = 1, dim(R) = 2 and L = qf(R).

Elasticity of A + XB[X] when A ⊂ B is a minimal extension of integral domains

Ahmed Ayache, Hanen Monceur (2011)

Colloquium Mathematicae

Similarity:

We investigate the elasticity of atomic domains of the form ℜ = A + XB[X], where X is an indeterminate, A is a local domain that is not a field, and A ⊂ B is a minimal extension of integral domains. We provide the exact value of the elasticity of ℜ in all cases depending the position of the maximal ideals of B. Then we investigate when such domains are half-factorial domains.