The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fractional integration and functions self-reciprocal in Hankel transforms”

The generalizations of integral analog of the Leibniz rule on the G-convolutions.

Semyon B. Yakubovich, Yurii F. Luchko (1991)

Extracta Mathematicae

Similarity:

An integral analog of the Leibniz rule for the operators of fractional calculus was considered in paper [1]. These operators are known to belong to the class of convolution transforms [2]. It seems very natural to try to obtain some new integral analog of the Leibniz rule for other convolution operators. We have found a general method for constructing such integral analogs on the base of notion of G-convolution [4]. Several results obtained by this method are represented in this article. ...

A multiplier theorem for the Hankel transform.

Rafal Kapelko (1998)

Revista Matemática Complutense

Similarity:

Riesz function technique is used to prove a multiplier theorem for the Hankel transform, analogous to the classical Hörmander-Mihlin multiplier theorem (Hörmander (1960)).

Dependence of fractional powers of elliptic operators on boundary conditions

Pavel E. Sobolevskii (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

The realization of an elliptic operator A under suitable boundary conditions is considered and the dependence of the square-root of A from the various conditions is studied.