Displaying similar documents to “Some Para-Hermitian Related Complex Structures and Non-existence of Semi-Riemannian Metric on Some Spheres”

An anti-Kählerian Einstein structure on the tangent bundle of a space form

Vasile Oproiu, Neculai Papaghiuc (2005)

Colloquium Mathematicae

Similarity:

In [11] we have considered a family of almost anti-Hermitian structures (G,J) on the tangent bundle TM of a Riemannian manifold (M,g), where the almost complex structure J is a natural lift of g to TM interchanging the vertical and horizontal distributions VTM and HTM and the metric G is a natural lift of g of Sasaki type, with the property of being anti-Hermitian with respect to J. Next, we have studied the conditions under which (TM,G,J) belongs to one of the eight classes of anti-Hermitian...

A Product Twistor Space

Blair, David (2002)

Serdica Mathematical Journal

Similarity:

∗Research supported in part by NSF grant INT-9903302. In previous work a hyperbolic twistor space over a paraquaternionic Kähler manifold was defined, the fibre being the hyperboloid model of the hyperbolic plane with constant curvature −1. Two almost complex structures were defined on this twistor space and their properties studied. In the present paper we consider a twistor space over a paraquaternionic Kähler manifold with fibre given by the hyperboloid of 1-sheet,...

Natural diagonal Riemannian almost product and para-Hermitian cotangent bundles

Simona-Luiza Druţă-Romaniuc (2012)

Czechoslovak Mathematical Journal

Similarity:

We obtain the natural diagonal almost product and locally product structures on the total space of the cotangent bundle of a Riemannian manifold. Studying the compatibility and the anti-compatibility relations between the determined structures and a natural diagonal metric, we find the Riemannian almost product (locally product) and the (almost) para-Hermitian cotangent bundles of natural diagonal lift type. Finally, we prove the characterization theorem for the natural diagonal (almost)...

Superminimal fibres in an almost Hermitian submersion

Bill Watson (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Se la varietà base, N , di una submersione quasi-Hermitiana, f : M N , è una G 1 -varietà e le fibre sono subvarietà superminimali, allora lo spazio totale, M , è G 1 . Se la varietà base, N , è Hermitiana e le fibre sono subvarietà bidimensionali e superminimali, allora lo spazio totale, M , è Hermitiano.