Group extensions of -adic and adelic linear groups
Calvin C. Moore (1968)
Publications Mathématiques de l'IHÉS
Similarity:
Calvin C. Moore (1968)
Publications Mathématiques de l'IHÉS
Similarity:
Paul Igodt, Wim Malfait (1994)
Manuscripta mathematica
Similarity:
Kuniaki Horie, Mitsuko Horie (2008)
Acta Arithmetica
Similarity:
A. M. Turing (1938)
Compositio Mathematica
Similarity:
Esben T. Kehlet (1979)
Mathematica Scandinavica
Similarity:
M. R. Koushesh
Similarity:
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...
Alessandro Caterino, Stefano Guazzone (1998)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Jean-Luc Brylinski, Pierre Deligne (2001)
Publications Mathématiques de l'IHÉS
Similarity:
J.P. Troallic, G. Hansel (1992)
Semigroup forum
Similarity: