Central extensions of reductive groups by K 2

Jean-Luc Brylinski; Pierre Deligne

Publications Mathématiques de l'IHÉS (2001)

  • Volume: 94, page 5-85
  • ISSN: 0073-8301

How to cite

top

Brylinski, Jean-Luc, and Deligne, Pierre. "Central extensions of reductive groups by $K_2$." Publications Mathématiques de l'IHÉS 94 (2001): 5-85. <http://eudml.org/doc/104179>.

@article{Brylinski2001,
author = {Brylinski, Jean-Luc, Deligne, Pierre},
journal = {Publications Mathématiques de l'IHÉS},
keywords = {reductive groups; ; universal central extensions; simply connected algebraic groups},
language = {eng},
pages = {5-85},
publisher = {Institut des Hautes Etudes Scientifiques},
title = {Central extensions of reductive groups by $K_2$},
url = {http://eudml.org/doc/104179},
volume = {94},
year = {2001},
}

TY - JOUR
AU - Brylinski, Jean-Luc
AU - Deligne, Pierre
TI - Central extensions of reductive groups by $K_2$
JO - Publications Mathématiques de l'IHÉS
PY - 2001
PB - Institut des Hautes Etudes Scientifiques
VL - 94
SP - 5
EP - 85
LA - eng
KW - reductive groups; ; universal central extensions; simply connected algebraic groups
UR - http://eudml.org/doc/104179
ER -

References

top
  1. [1] S. BLOCH, Some formulas pertaining to the K-theory of commutative group schemes, J. Alg. 53 (1978), 304-326. Zbl0432.14014MR502630
  2. [2] S. BLOCH, A note on Gersten’s conjecture in the mixed characteristic case, in: Applications of algebraic K-theory to algebraic geometry and number theory (Boulder, 1983), Contemp. Math. 55, AMS (1986), 75-78. Zbl0598.13007
  3. [3] S. BLOCH and K. KATO, p-adic étale cohomology, Publ. Math. IHES 63 (1986), 107-152. Zbl0613.14017MR849653
  4. [4] S. BLOCH and A. OGUS, Gersten’s conjecture and the homology of schemes, Ann. Sci. Ec. Norm. Sup. 7 (1974), 181-202. Zbl0307.14008
  5. [5] F. BRUHAT et J. TITS, Groupes réductifs sur un corps local II, Publ. Math. IHES 60 (1984), 5-184. Zbl0597.14041MR327923
  6. [6] J. L. BRYLINSKI and D. McLAUGHLIN, The geometry of the first Pontryagin class and of line bundles on loop spaces I, Duke Math. J. 35 (1994), 603-638. Zbl0844.57025MR1291698
  7. [7] J.-L. COLLIOT-THÉLÈNE, Hilbert Theorem 90 for K2, with application to the Chow groups of rational surfaces, Invent. Math. 71 (1983), 1-20. Zbl0527.14011MR688259
  8. [8] P. DELIGNE, Extensions centrales de groupes algébriques simplement connexes et cohomologie galoisienne, Publ. Math. IHES 84 (1996), 35-89. Zbl0930.20043MR1441006
  9. [9] M. DEMAZURE, Désingularisation des variétés de Schubert généralisées, Ann. Sci. El. Norm. Sup. 7 (1974), 53-88. Zbl0312.14009MR354697
  10. [10] H. ESNAULT, B. KAHN, M. LEVINE and E. VIEHWEG, The Arason invariant and mod 2 algebraic cycles, JAMS 11 (1998), no. 1, 73-118. Zbl1025.11009MR1460391
  11. [11] H. GARLAND, The arithmetic theory of loop groups, Publ. Math. IHES 52 (1980), 181-312. Zbl0475.17004MR601519
  12. [12] J. GIRAUD, Méthode de la descente, Bull. SMF, mémoire, n°2 (1964). Zbl0211.32902MR190142
  13. [13] R. GODEMENT, Théorie des faisceaux, Hermann, Paris (1958). Zbl0080.16201MR102797
  14. [14] A. GROTHENDIECK, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957), 119-221. Zbl0118.26104
  15. [15] B. KAHN, Descente galoisienne et K2 des corps de nombres, K-theory 7 (1) (1993). Zbl0780.12007MR1220427
  16. [16] B. KAHN, Applications of weight two motivic cohomology, Doc. Math., (J. DMV) 1 (1996), 395-416. Zbl0883.19002MR1423901
  17. [17] M. LEVINE, The algebraic K-theory of the classical groups and some twisted forms, Duke Math. J. 70 (1993), 405-443. Zbl0798.11009MR1219818
  18. [18] S. LICHTENBAUM, The construction of weight two arithmetic cohomology, Inv. Math. 88 (1987), 183-215. Zbl0615.14004MR877012
  19. [19] G. W. MACKEY, Les ensembles boréliens et les extensions de groupes, J. Math. Pure et Appl. 36 (1957), 171-178. Zbl0080.02303MR89998
  20. [20] H. MATSUMOTO, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Ec. Norm. Sup. 2 (1969), 1-62. Zbl0261.20025MR240214
  21. [21] A. S. MERKURJEV and A. SUSLIN, K -cohomology of Severi-Brauer varieties and the norm residue homomorphism, Math. USSR. Izv. 21 2 (1983), 307-340. Zbl0525.18008
  22. [22] J. MILNOR, Introduction to Algebraic K-Theory, Annals Math. Studies 72, Princeton University Press (1971). Zbl0237.18005MR349811
  23. [23] C. MOORE, Group extensions of p-adic and adelic linear groups, Publ. Math. IHES 35 (1968), 40-86. Zbl0159.03203MR244258
  24. [24] G. PRASAD and A. S. RAPINCHUK, Computation of the metaplectic kernel, Publ. Math. IHES 84 (1996), 91-187. Zbl0941.22019MR1441007
  25. [25] D. QUILLEN, Higher Algebraic K-Theory I, Batelle Institute Conference 1972, Lecture Notes in Math. 341 (1973), 85-147. Zbl0292.18004MR338129
  26. [26] G. SEGAL, The definition of conformal field theory, in: Differential geometric methods in mathematical physics (Como, 1987) 165-171, NATO Adv. Sci. Inst. Ser. C, Math. Phys. Sci. 250 (1988), Kluwer. Zbl0657.53060MR981378
  27. [27] C. C. SHERMAN, K-cohomology of coherent sheaves, Comm. Alg. 7 (1979), 990-1027. Zbl0425.18010MR541048
  28. [28] R. STEINBERG, Générateurs, relations et revêtements de groupes algébriques (1962), Colloque sur la théorie des groupes algébriques, Bruxelles, 113-127. Zbl0272.20036MR153677
  29. [29] C. SOULÉ, K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Inv. Math. 55 (1979), 251-295. Zbl0437.12008
  30. [30] A. A. SUSLIN, Torsion in K2 of fields, K-Theory 1 (1987), 5-29. Zbl0635.12015MR899915
  31. [31] J. TATE, Relations between K2 and Galois cohomology, Inv. Math. 36 (1976), 257-274. Zbl0359.12011MR429837
  32. [32] J. TITS, Sur les constantes de structure et le théorème d’existence des algèbres de Lie semi-simples, Publ. Math. IHES 31 (1966), 21-58. Zbl0145.25804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.