Cotorsion modules for torsion theories
Henderson, J., Orzech, M. (1977)
Portugaliae mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Henderson, J., Orzech, M. (1977)
Portugaliae mathematica
Similarity:
Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2015)
Formalized Mathematics
Similarity:
In this article, we formalize in Mizar [7] the definition of “torsion part” of ℤ-module and its properties. We show ℤ-module generated by the field of rational numbers as an example of torsion-free non free ℤ-modules. We also formalize the rank-nullity theorem over finite-rank free ℤ-modules (previously formalized in [1]). ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm [23] and cryptographic systems with lattices [24].
Ahsan, J., Enochs, E. (1981)
Portugaliae mathematica
Similarity:
L. Fuchs (1986)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
M. Rauf Quershi (1973)
Fundamenta Mathematicae
Similarity:
Ladislav Bican (2008)
Czechoslovak Mathematical Journal
Similarity:
In the class of all exact torsion theories the torsionfree classes are cover (precover) classes if and only if the classes of torsionfree relatively injective modules or relatively exact modules are cover (precover) classes, and this happens exactly if and only if the torsion theory is of finite type. Using the transfinite induction in the second half of the paper a new construction of a torsionfree relatively injective cover of an arbitrary module with respect to Goldie’s torsion theory...
László Fuchs, Rüdiger Göbel (2007)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Otto Gerstner (1975)
Publications mathématiques et informatique de Rennes
Similarity: