Displaying similar documents to “The Dolbeault operator on Hermitian spin surfaces”

Selfdual Einstein hermitian four-manifolds

Vestislav Apostolov, Paul Gauduchon (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Similarity:

We provide a local classification of selfdual Einstein riemannian four-manifolds admitting a positively oriented hermitian structure and characterize those which carry a hyperhermitian, non-hyperkähler structure compatible with the negative orientation. We show that selfdual Einstein 4-manifolds obtained as quaternionic quotients of P 2 and H 2 are hermitian.

Hermitian spin surfaces with small eigenvalues of the Dolbeault operator

Bogdan Alexandrov (2004)

Annales de l'Institut Fourier

Similarity:

We study the compact Hermitian spin surfaces with positive conformal scalar curvature on which the first eigenvalue of the Dolbeault operator of the spin structure is the smallest possible. We prove that such a surface is either a ruled surface or a Hopf surface. We give a complete classification of the ruled surfaces with this property. For the Hopf surfaces we obtain a partial classification and some examples

Weakly-Einstein hermitian surfaces

Vestislav Apostolov, Oleg Muškarov (1999)

Annales de l'institut Fourier

Similarity:

A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as we obtain a complete classification of the compact locally homogeneous * -Einstein Hermitian surfaces. We also provide large families of non-homogeneous * -Einstein (but non-Einstein) Hermitian metrics on 2 2 , 1 × 1 , and on the product surface X × Y of two curves X and Y whose genuses are greater than 1...

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

Similarity:

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds...

Stable bundles on hypercomplex surfaces

Ruxandra Moraru, Misha Verbitsky (2010)

Open Mathematics

Similarity:

A hypercomplex manifold is a manifold equipped with three complex structures I, J, K satisfying the quaternionic relations. Let M be a 4-dimensional compact smooth manifold equipped with a hypercomplex structure, and E be a vector bundle on M. We show that the moduli space of anti-self-dual connections on E is also hypercomplex, and admits a strong HKT metric. We also study manifolds with (4,4)-supersymmetry, that is, Riemannian manifolds equipped with a pair of strong HKT-structures...