Weakly-Einstein hermitian surfaces

Vestislav Apostolov; Oleg Muškarov

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 5, page 1673-1692
  • ISSN: 0373-0956

Abstract

top
A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as * -Einstein condition we obtain a complete classification of the compact locally homogeneous * -Einstein Hermitian surfaces. We also provide large families of non-homogeneous * -Einstein (but non-Einstein) Hermitian metrics on 2 2 , 1 × 1 , and on the product surface X × Y of two curves X and Y whose genuses are greater than 1 and 0, respectively.

How to cite

top

Apostolov, Vestislav, and Muškarov, Oleg. "Weakly-Einstein hermitian surfaces." Annales de l'institut Fourier 49.5 (1999): 1673-1692. <http://eudml.org/doc/75398>.

@article{Apostolov1999,
abstract = {A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as $*$-Einstein condition we obtain a complete classification of the compact locally homogeneous $*$-Einstein Hermitian surfaces. We also provide large families of non-homogeneous $*$-Einstein (but non-Einstein) Hermitian metrics on $\{\Bbb C\}\{\Bbb P\}^2\sharp \bar\{\{\Bbb C\}\{\Bbb P\}\}^2$, $\{\Bbb C\}\{\Bbb P\}^1\times \{\Bbb C\}\{\Bbb P\}^1$, and on the product surface $X\times Y$ of two curves $X$ and $Y$ whose genuses are greater than 1 and 0, respectively.},
author = {Apostolov, Vestislav, Muškarov, Oleg},
journal = {Annales de l'institut Fourier},
keywords = {Hermitian surface; Einstein metric; locally conformally Kähler surface; Hopf surface; *-Einstein; Einstein; Vaisman metric},
language = {eng},
number = {5},
pages = {1673-1692},
publisher = {Association des Annales de l'Institut Fourier},
title = {Weakly-Einstein hermitian surfaces},
url = {http://eudml.org/doc/75398},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Apostolov, Vestislav
AU - Muškarov, Oleg
TI - Weakly-Einstein hermitian surfaces
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1673
EP - 1692
AB - A consequence of the Riemannian Goldberg-Sachs theorem is the fact that the Kähler form of an Einstein Hermitian surface is an eigenform of the curvature operator. Referring to this property as $*$-Einstein condition we obtain a complete classification of the compact locally homogeneous $*$-Einstein Hermitian surfaces. We also provide large families of non-homogeneous $*$-Einstein (but non-Einstein) Hermitian metrics on ${\Bbb C}{\Bbb P}^2\sharp \bar{{\Bbb C}{\Bbb P}}^2$, ${\Bbb C}{\Bbb P}^1\times {\Bbb C}{\Bbb P}^1$, and on the product surface $X\times Y$ of two curves $X$ and $Y$ whose genuses are greater than 1 and 0, respectively.
LA - eng
KW - Hermitian surface; Einstein metric; locally conformally Kähler surface; Hopf surface; *-Einstein; Einstein; Vaisman metric
UR - http://eudml.org/doc/75398
ER -

References

top
  1. [1] V. APOSTOLOV, J. DAVIDOV and O. MUŠKAROV, Self-dual hermitian surfaces, Trans. Amer. Math. Soc., 349 (1986), 3051-3063. Zbl0880.53053
  2. [2] V. APOSTOLOV and P. GAUDUCHON, The Riemannian Goldberg-Sachs theorem, Int. J. Math., 8 (1997) 421-439. Zbl0891.53054MR98g:53080
  3. [3] T. AUBIN, Equations du type Monge-Ampère sur les variétés kählériennes compactes. C.R.A.S. Paris, 283A (1976) 119. Zbl0333.53040MR55 #6496
  4. [4] T. AUBIN, Nonlinear analysis on manifolds. Monge-Ampère Equations, Grund. Math. Wiss. 252, Springer, Berlin-Heildelberg-New York, 1982. Zbl0512.53044MR85j:58002
  5. [5] W. BARTH, C. PETERS and A. Van de VEN, Compact complex surfaces, Springer-Verlagh, Berlin-Heidelberg-New York-Tokyo, 1984. Zbl0718.14023MR86c:32026
  6. [6] F.A. BELGUN, On the metric structure of non-Kähler complex surfaces, Preprint of Ecole Polytechnique (1998). Zbl0988.32017
  7. [7] A. BESSE, Géométrie rieamannienne en dimension 4, Séminaire A.Besse, 1978-1979, eds. Bérard-Bergery, Berger, Houzel, CEDIC/Fernand Nathan, 1981. 
  8. [8] A. BESSE, Einstein Manifolds, Ergeb. Math. Grenzgeb., Vol. 10, Springer, Berlin-Heildelberg-New-York, 1987. Zbl0613.53001MR88f:53087
  9. [9] C. BOYER, Conformal duality and compact complex surfaces, Math. Ann., 274 (1986), 517-526. Zbl0571.32017MR87i:53068
  10. [10] A. DERDZIŃSKI, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math., 49 (1983), 405-433. Zbl0527.53030MR84h:53060
  11. [11] P. GAUDUCHON, Fibrés hermitiens à endomorphisme de Ricci non négatif, Bull. Soc. Math. France, 105 (1977), 113-140. Zbl0382.53045MR58 #6375
  12. [12] P. GAUDUCHON, La 1-forme de torsion d'une variété hermitienne compacte, Math. Ann., 267 (1984), 495-518. Zbl0523.53059MR87a:53101
  13. [13] P. GAUDUCHON, Structures de Weyl-Einstein, espaces de twisteurs et variétés de type S1 ȕ S3, J. reine angew. Math., 469 (1995), 1-50. Zbl0858.53039MR97d:53048
  14. [14] P. GAUDUCHON and L. ORNEA, Locally conformally Kähler metrics on Hopf surfaces, Ann. Inst. Fourier, 48-4 (1998), 1107-1127. Zbl0917.53025MR2000g:53088
  15. [15] G. GRANTCHAROV and O. MUŠKAROV, Hermitian *-Einstein surfaces, Proc. Amer. Math. Soc. 120 (1994), 233-239. Zbl0796.53068MR94b:53081
  16. [16] G.R. JENSEN, Homogeneous Einstein spaces of dimension 4, J. Differential Geom., 3 (1969), 309-349. Zbl0194.53203MR41 #6100
  17. [17] J. KAZDAN and F. WARNER, Curvature functions for compact 2-manifolds, Ann. of Math., 99 (1974), 203-219. Zbl0278.53031MR49 #7949
  18. [18] S. KOBAYASHI and K. NOMIZU, Foundations of Differential Geometry I, II, Interscience Publishers, 1963. Zbl0119.37502
  19. [19] C. LEBRUN, Einstein Metrics on Complex Surfaces, in Geometry and Physics (Aarhus 1995), Eds. J. Andersen, J. Dupont, H. Pedersen and A. Swann, Lect. Notes in Pure Appl. Math., Marcel Dekker, 1996. Zbl0876.53024
  20. [20] P. NUROWSKI, Einstein equations and Cauchy-Riemann geometry, Ph. D. Thesis, SISSA/ISAS, Trieste (1993). 
  21. [21] D. PAGE, A compact rotating Gravitational Instanton, Phys. Lett., 79 B (1979), 235-238. 
  22. [22] L. ORNEA and P. PICCINNI, Induced Hopf bundles and Einstein metrics, in New developments in differential geometry, Budapest 1996, 295-305, Kluwer Acad. Publ., Dordrecht, 1999. Zbl0949.53033
  23. [23] M. PONTECORVO, Uniformization of conformally flat Hermitian surfaces, Diff. Geom. and its Appl., 2 (1992), 295-305. Zbl0766.53052MR94k:32052
  24. [24] M. PRZANOWSKI and B. BRODA, Locally Kähler Gravitational Instantons, Acta Phys. Pol., B14 (1983), 637-661. 
  25. [25] Y.T. SIU, Every K3 surface is Kähler, Invent. Math., 73 (1983), 139-150. Zbl0557.32004MR84j:32036
  26. [26] G. TIAN, On Calabi's Conjecture for Complex Surfaces with positive First Chern Class, Invent. Math., 10, (1990), 101-172. Zbl0716.32019MR91d:32042
  27. [27] K.P. TOD, Cohomogeneity-One Metrics with Self-dual Weyl Tensor, Twistor Theory (S. Huggett, ed.), Marcel Dekker Inc., New York, 1995, pp. 171-184. Zbl0827.53017MR95i:53056
  28. [28] A. TODOROV, Applications of the Kähler-Einstein Calabi-Yau metrics to moduli of K3 surfaces, Invent. Math., 61 (1980), 251-265. Zbl0472.14006MR82k:32065
  29. [29] F. TRICERRI and L. VANHECKE, Curvature tensors on almost-Hermitian manifolds, Trans. Amer. Math. Soc., 267 (1981), 365-398. Zbl0484.53014MR82j:53071
  30. [30] I. VAISMAN, On locally and globally conformal Kähler manifolds, Trans. Amer. Math. Soc., 262 (1980), 533-542. Zbl0446.53048MR81j:53064
  31. [31] I. VAISMAN, Generalized Hopf manifolds, Geom. Dedicata, 13 (1982), 231-255. Zbl0506.53032MR84g:53096
  32. [32] I. VAISMAN, Some curvature properties of complex surfaces, Ann. Mat. Pura Appl., 32 (1982), 1-18. Zbl0512.53058MR84i:53064
  33. [33] S-T. YAU, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure Appl. Math., 31 (1978) 339-411. Zbl0369.53059MR81d:53045

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.