Displaying similar documents to “Asymptotics and stability for global solutions to the Navier-Stokes equations”

Global solutions, structure of initial data and the Navier-Stokes equations

Piotr Bogusław Mucha (2008)

Banach Center Publications

Similarity:

In this note we present a proof of existence of global in time regular (unique) solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general boundary condition. The only restriction is that the L₂-norm of the initial datum is required to be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations show the essential role played by the energy bound in proving global in time results for the Navier-Stokes equations. ...

The resolution of the Navier-Stokes equations in anisotropic spaces.

Dragos Iftimie (1999)

Revista Matemática Iberoamericana

Similarity:

In this paper we prove global existence and uniqueness for solutions of the 3-dimensional Navier-Stokes equations with small initial data in spaces which are H in the i-th direction, δ + δ + δ = 1/2, -1/2 < δ < 1/2 and in a space which is L in the first two directions and B in the third direction, where H and B denote the usual homogeneous Sobolev and Besov spaces.