The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The computation of Stiefel-Whitney classes”

The multiplicative structure of K(n)* (BA).

Maurizio Brunetti (1997)

Publicacions Matemàtiques

Similarity:

Let K(n)*(-) be a Morava K-theory at the prime 2. Invariant theory is used to identify K(n)*(BA) as a summand of K(n)*(BZ/2 × BZ/2). Similarities with H*(BA;Z/2) are also discussed.

A Pieri-type formula for even orthogonal Grassmannians

Piotr Pragacz, Jan Ratajski (2003)

Fundamenta Mathematicae

Similarity:

We study the cohomology ring of the Grassmannian G of isotropic n-subspaces of a complex 2m-dimensional vector space, endowed with a nondegenerate orthogonal form (here 1 ≤ n < m). We state and prove a formula giving the Schubert class decomposition of the cohomology products in H*(G) of general Schubert classes by "special Schubert classes", i.e. the Chern classes of the dual of the tautological vector bundle of rank n on G. We discuss some related properties of reduced decompositions...

The cohomology ring of polygon spaces

Jean-Claude Hausmann, Allen Knutson (1998)

Annales de l'institut Fourier

Similarity:

We compute the integer cohomology rings of the “polygon spaces”introduced in [F. Kirwan, Cohomology rings of moduli spaces of vector bundles over Riemann surfaces, J. Amer. Math. Soc., 5 (1992), 853-906] and [M. Kapovich & J. Millson, the symplectic geometry of polygons in Euclidean space, J. of Diff. Geometry, 44 (1996), 479-513]. This is done by embedding them in certain toric varieties; the restriction map on cohomology is surjective and we calculate its kernel using ideas from...