Controllability of nonlinear delay systems with delay depending on state variable
Krishnan Balachandran, D. Somasundaram (1986)
Kybernetika
Similarity:
Krishnan Balachandran, D. Somasundaram (1986)
Kybernetika
Similarity:
Mengmeng Li, Michal Fečkan, JinRong Wang (2023)
Applications of Mathematics
Similarity:
We first consider the finite time stability of second order linear differential systems with pure delay via giving a number of properties of delayed matrix functions. We secondly give sufficient and necessary conditions to examine that a linear delay system is relatively controllable. Further, we apply the fixed-point theorem to derive a relatively controllable result for a semilinear system. Finally, some examples are presented to illustrate the validity of the main theorems. ...
Baghli, S., Benchohra, M., Ezzinbi, K. (2009)
Surveys in Mathematics and its Applications
Similarity:
Hugo Leiva (2015)
Nonautonomous Dynamical Systems
Similarity:
In this paper we prove the interior approximate controllability of the following Semilinear Heat Equation with Impulses and Delay [...] where Ω is a bounded domain in RN(N ≥ 1), φ : [−r, 0] × Ω → ℝ is a continuous function, ! is an open nonempty subset of Ω, 1ω denotes the characteristic function of the set ! and the distributed control u be- longs to L2([0, τ]; L2(Ω; )). Here r ≥ 0 is the delay and the nonlinear functions f , Ik : [0, τ] × ℝ × ℝ → ℝ are smooth enough, such that [...]...
Hugo Leiva (2017)
Nonautonomous Dynamical Systems
Similarity:
Evading fixed point theorems we prove the interior approximate controllability of the following semilinear strongly damped wave equation with impulses and delay [...] in the space Z1/2 = D((−Δ)1/2)×L2(Ω),where r > 0 is the delay, Γ = (0, τ)×Ω, ∂Γ = (0, τ) × ∂Ω, Γr = [−r, 0] × Ω, (ϕ,ψ) ∈ C([−r, 0]; Z1/2), k = 1, 2, . . . , p, Ω is a bounded domain in ℝℕ(ℕ ≥ 1), ω is an open nonempty subset of , 1 ω denotes the characteristic function of the set ω, the distributed control u ∈ L2(0,...