The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the resilience of long cycles in random graphs.”

Fruit salad.

Gyárfás, András (1997)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

The Turàn number of the graph 3P4

Halina Bielak, Sebastian Kieliszek (2014)

Annales UMCS, Mathematica

Similarity:

Let ex (n,G) denote the maximum number of edges in a graph on n vertices which does not contain G as a subgraph. Let Pi denote a path consisting of i vertices and let mPi denote m disjoint copies of Pi. In this paper we count ex(n, 3P4)

A note on the Size-Ramsey number of long subdivisions of graphs

Jair Donadelli, Penny E. Haxell, Yoshiharu Kohayakawa (2005)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

Similarity:

Let T s H be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321–328], we prove that, for any graph H , there exist graphs G with O ( s ) edges that are Ramsey with respect to T s H .