Displaying similar documents to “An extremal characterization of projective planes.”

The cycle-complete graph Ramsey number r(C₅,K₇)

Ingo Schiermeyer (2005)

Discussiones Mathematicae Graph Theory

Similarity:

The cycle-complete graph Ramsey number r(Cₘ,Kₙ) is the smallest integer N such that every graph G of order N contains a cycle Cₘ on m vertices or has independence number α(G) ≥ n. It has been conjectured by Erdős, Faudree, Rousseau and Schelp that r(Cₘ,Kₙ) = (m-1)(n-1)+1 for all m ≥ n ≥ 3 (except r(C₃,K₃) = 6). This conjecture holds for 3 ≤ n ≤ 6. In this paper we will present a proof for r(C₅,K₇) = 25.

Dynamic cage survey.

Exoo, Geoffrey, Jajcay, Robert (2008)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

1-factors and characterization of reducible faces of plane elementary bipartite graphs

Andrej Taranenko, Aleksander Vesel (2012)

Discussiones Mathematicae Graph Theory

Similarity:

As a general case of molecular graphs of benzenoid hydrocarbons, we study plane bipartite graphs with Kekulé structures (1-factors). A bipartite graph G is called elementary if G is connected and every edge belongs to a 1-factor of G. Some properties of the minimal and the maximal 1-factor of a plane elementary graph are given. A peripheral face f of a plane elementary graph is reducible, if the removal of the internal vertices and edges of the path that is the intersection...

On hypergraphs of girth five.

Lazebnik, Felix, Verstraëte, Jacques (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity: