Displaying similar documents to “Existence and uniqueness of solutions to impulsive fractional differential equations.”

Anti-Periodic Boundary Value Problem for Impulsive Fractional Integro Differential Equations

Anguraj, A., Karthikeyan, P. (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37 In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.

The general solution of impulsive systems with Riemann-Liouville fractional derivatives

Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)

Open Mathematics

Similarity:

In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.

System of fractional differential equations with Erdélyi-Kober fractional integral conditions

Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)

Open Mathematics

Similarity:

In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.

A Fractional LC − RC Circuit

Ayoub, N., Alzoubi, F., Khateeb, H., Al-Qadi, M., Hasan (Qaseer), M., Albiss, B., Rousan, A. (2006)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05 We suggest a fractional differential equation that combines the simple harmonic oscillations of an LC circuit with the discharging of an RC circuit. A series solution is obtained for the suggested fractional differential equation. When the fractional order α = 0, we get the solution for the RC circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary α we get a general solution...

Impulsive Fractional Differential Inclusions Involving the Caputo Fractional Derivative

Ait Dads, E., Benchohra, M., Hamani, S. (2009)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 34A37. In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential inclusions involving the Caputo fractional derivative. Both cases of convex and nonconvex valued right-hand side are considered. The topological structure of the set of solutions is also considered.

IVPs for singular multi-term fractional differential equations with multiple base points and applications

Yuji Liu, Pinghua Yang (2014)

Applicationes Mathematicae

Similarity:

The purpose of this paper is to study global existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations. By constructing a special Banach space and employing fixed-point theorems, some sufficient conditions are obtained for the global existence and uniqueness of solutions of this kind of equations involving Caputo fractional derivatives and multiple base points. We apply the results to solve the forced logistic model with multi-term...

On contraction principle applied to nonlinear fractional differential equations with derivatives of order α ∈ (0,1)

Małgorzata Klimek (2011)

Banach Center Publications

Similarity:

One-term and multi-term fractional differential equations with a basic derivative of order α ∈ (0,1) are solved. The existence and uniqueness of the solution is proved by using the fixed point theorem and the equivalent norms designed for a given value of parameters and function space. The explicit form of the solution obeying the set of initial conditions is given.