Existence of solutions to fractional order ordinary and delay differential equations and applications.
Abbas, Syed (2011)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Abbas, Syed (2011)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Benchohra, Mouffak, Hamani, Samira, Ntouyas, Sotiris K. (2008)
Surveys in Mathematics and its Applications
Similarity:
Benchohra, M., Seba, D. (2009)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Pei-Luan Li, Chang-Jin Xu (2015)
Open Mathematics
Similarity:
In this paper, we investigate the boundary value problems of fractional order differential equations with not instantaneous impulse. By some fixed-point theorems, the existence results of mild solution are established. At last, one example is also given to illustrate the results.
Matar, Mohammed M. (2009)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Anguraj, A., Karthikeyan, P. (2010)
Fractional Calculus and Applied Analysis
Similarity:
MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37 In this paper we prove the existence of solutions for fractional impulsive differential equations with antiperiodic boundary condition in Banach spaces. The results are obtained by using fractional calculus' techniques and the fixed point theorems.
Sandeep P. Bhairat, Dnyanoba-Bhaurao Dhaigude (2019)
Mathematica Bohemica
Similarity:
This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
Xianmin Zhang, Wenbin Ding, Hui Peng, Zuohua Liu, Tong Shu (2016)
Open Mathematics
Similarity:
In this paper, we study a kind of fractional differential system with impulsive effect and find the formula of general solution for the impulsive fractional-order system by analysis of the limit case (as impulse tends to zero). The obtained result shows that the deviation caused by impulses for fractional-order system is undetermined. An example is also provided to illustrate the result.
Natthaphong Thongsalee, Sorasak Laoprasittichok, Sotiris K. Ntouyas, Jessada Tariboon (2015)
Open Mathematics
Similarity:
In this paper we study existence and uniqueness of solutions for a system consisting from fractional differential equations of Riemann-Liouville type subject to nonlocal Erdélyi-Kober fractional integral conditions. The existence and uniqueness of solutions is established by Banach’s contraction principle, while the existence of solutions is derived by using Leray-Schauder’s alternative. Examples illustrating our results are also presented.
Yang, Aijun, Wang, Helin (2011)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Ayoub, N., Alzoubi, F., Khateeb, H., Al-Qadi, M., Hasan (Qaseer), M., Albiss, B., Rousan, A. (2006)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: 26A33, 30B10, 33B15, 44A10, 47N70, 94C05 We suggest a fractional differential equation that combines the simple harmonic oscillations of an LC circuit with the discharging of an RC circuit. A series solution is obtained for the suggested fractional differential equation. When the fractional order α = 0, we get the solution for the RC circuit, and when α = 1, we get the solution for the LC circuit. For arbitrary α we get a general solution...
Ait Dads, E., Benchohra, M., Hamani, S. (2009)
Fractional Calculus and Applied Analysis
Similarity:
Mathematics Subject Classification: 26A33, 34A37. In this paper, we establish sufficient conditions for the existence of solutions for a class of initial value problem for impulsive fractional differential inclusions involving the Caputo fractional derivative. Both cases of convex and nonconvex valued right-hand side are considered. The topological structure of the set of solutions is also considered.