Existence of solutions of generalized fractional differential equation with nonlocal initial condition
Sandeep P. Bhairat; Dnyanoba-Bhaurao Dhaigude
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 203-220
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBhairat, Sandeep P., and Dhaigude, Dnyanoba-Bhaurao. "Existence of solutions of generalized fractional differential equation with nonlocal initial condition." Mathematica Bohemica 144.2 (2019): 203-220. <http://eudml.org/doc/294625>.
@article{Bhairat2019,
abstract = {This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.},
author = {Bhairat, Sandeep P., Dhaigude, Dnyanoba-Bhaurao},
journal = {Mathematica Bohemica},
keywords = {fractional derivative; fractional integral; existence of solution; fractional differential equation; fixed point theorem},
language = {eng},
number = {2},
pages = {203-220},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of solutions of generalized fractional differential equation with nonlocal initial condition},
url = {http://eudml.org/doc/294625},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Bhairat, Sandeep P.
AU - Dhaigude, Dnyanoba-Bhaurao
TI - Existence of solutions of generalized fractional differential equation with nonlocal initial condition
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 203
EP - 220
AB - This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
LA - eng
KW - fractional derivative; fractional integral; existence of solution; fractional differential equation; fixed point theorem
UR - http://eudml.org/doc/294625
ER -
References
top- Abbas, S., Benchohra, M., Lagreg, J.-E., Zhou, Y., 10.1016/j.chaos.2017.03.010, Chaos Solitons Fractals 102 (2017), 47-71. (2017) Zbl1374.34004MR3671994DOI10.1016/j.chaos.2017.03.010
- Agarwal, R. P., Benchohra, M., Hamani, S., 10.1007/s10440-008-9356-6, Acta. Appl. Math. 109 (2010), 973-1033. (2010) Zbl1198.26004MR2596185DOI10.1007/s10440-008-9356-6
- Bagley, R. L., Torvik, P. J., 10.2514/3.8142, AIAA J. 21 (1983), 741-748. (1983) Zbl0514.73048DOI10.2514/3.8142
- Bagley, R. L., Torvik, P. J., 10.1122/1.549724, J. Rheol. 27 (1983), 201-210. (1983) Zbl0515.76012DOI10.1122/1.549724
- Bagley, R. L., Torvik, P. J., 10.1115/1.3167615, J. Appl. Mech. 51 (1984), 294-298. (1984) Zbl1203.74022DOI10.1115/1.3167615
- Bhairat, S. P., New approach to existence of solution of weighted Cauchy-type problem, Available at http://arxiv.org/abs/1808.03067 (2018), 10 pages. (2018)
- Bhairat, S. P., Dhaigude, D. B., Existence and stability of fractional differential equations involving generalized Katugampola derivative, Available at https://arxiv.org/ abs/1709.08838 (2017), 15 pages. (2017)
- Chitalkar-Dhaigude, C. D., Bhairat, S. P., Dhaigude, D. B., Solution of fractional differential equations involving Hilfer fractional derivative: Method of successive approximations, Bull. Marathwada Math. Soc. 18 (2017), 1-13. (2017)
- Dhaigude, D. B., Bhairat, S. P., Existence and continuation of solutions of Hilfer fractional differential equations, Available at http://arxiv.org/abs/1704.02462v1 (2017), 18 pages. (2017) MR3820828
- Dhaigude, D. B., Bhairat, S. P., Existence and uniqueness of solution of Cauchy-type problem for Hilfer fractional differential equations, Commun. Appl. Anal. 22 (2017), 121-134. (2017) MR3820828
- Dhaigude, D. B., Bhairat, S. P., On existence and approximation of solution of nonlinear Hilfer fractional differential equations, (to appear) in Int. J. Pure Appl. Math. Available at http://arxiv.org/abs/1704.02464 (2017), 9 pages. (2017) MR3820828
- Dhaigude, D. B., Bhairat, S. P., Local existence and uniqueness of solutions for Hilfer-Hadamard fractional differential problem, Nonlinear Dyn. Syst. Theory 18 (2018), 144-153. (2018) MR3820828
- Dhaigude, D. B., Bhairat, S. P., 10.22457/pindac.v6n1a4, Progress in Nonlinear Dynamics and Chaos 6 (2018), 29-38. (2018) DOI10.22457/pindac.v6n1a4
- Furati, K. M., Kassim, M. D., Tatar, N.-E., 10.1016/j.camwa.2012.01.009, Comput. Math. Appl. 64 (2012), 1616-1626. (2012) Zbl1268.34013MR2960788DOI10.1016/j.camwa.2012.01.009
- Furati, K. M., Tatar, N.-E., An existence result for a nonlocal fractional differential problem, J. Fractional Calc. 26 (2004), 43-51. (2004) Zbl1101.34001MR2096756
- Gaafar, F. M., 10.1016/j.joems.2013.12.008, J. Egypt. Math. Soc. 22 (2014), 341-347. (2014) Zbl1306.34007MR3260773DOI10.1016/j.joems.2013.12.008
- Hilfer, R., 10.1142/9789812817747, World Scientific, London (2000). (2000) Zbl0998.26002MR1890104DOI10.1142/9789812817747
- Hilfer, R., 10.1016/S0301-0104(02)00670-5, Chemical Physics 284 (2002), 399-408. (2002) MR1890106DOI10.1016/S0301-0104(02)00670-5
- Kassim, M. D., Tatar, N.-E., 10.1155/2013/605029, Abstr. Appl. Anal. 2013 (2013), Article ID 605029, 12 pages. (2013) MR3139483DOI10.1155/2013/605029
- Katugampola, U. N., 10.1016/j.amc.2011.03.062, Appl. Math. Comput. 218 (2011), 860-865. (2011) Zbl1231.26008MR2831322DOI10.1016/j.amc.2011.03.062
- Katugampola, U. N., A new approach to generalized fractional derivatives, Bull. Math. Anal. Appl. 6 (2014), 1-15. (2014) Zbl1317.26008MR3298307
- Katugampola, U. N., Existence and uniqueness results for a class of generalized fractional differenital equations, Available at https://arxiv.org/abs/1411.5229 (2016). (2016)
- Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., 10.1016/s0304-0208(06)x8001-5, North-Holland Mathematics Studies 204. Elsevier, Amsterdam (2006). (2006) Zbl1092.45003MR2218073DOI10.1016/s0304-0208(06)x8001-5
- Mainardi, F., 10.1142/9781848163300, World Scientific, Hackensack (2010). (2010) Zbl1210.26004MR2676137DOI10.1142/9781848163300
- Oliveira, D. S., Oliveira, E. Capelas de, Hilfer-Katugampola fractional derivative, Available at https://arxiv.org/abs/1705.07733 (2017). (2017) MR3826051
- Podlubny, I., Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Mathematics in Science and Engineering 198. Academic Press, San Diego (1999). (1999) Zbl0924.34008MR1658022
- Salamooni, A. Y. A., Pawar, D. D., Hilfer-Hadamard-type fractional differential equation with Cauchy-type problem, Available at https://arxiv.org/abs/1802.07483 (2018), 18 pages. (2018)
- Wang, J., Zhang, Y., 10.1016/j.amc.2015.05.144, Appl. Math. Comput. 266 (2015), 850-859. (2015) MR3377602DOI10.1016/j.amc.2015.05.144
Citations in EuDML Documents
top- John R. Graef, Shapour Heidarkhani, Lingju Kong, Shahin Moradi, Existence results for impulsive fractional differential equations with -Laplacian via variational methods
- Choukri Derbazi, Hadda Hammouche, Existence and uniqueness of integrable solutions to fractional Langevin equations involving two fractional orders with initial value problems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.