The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the number of cycles in k -connected graphs.”

Heavy Subgraph Conditions for Longest Cycles to Be Heavy in Graphs

Binlong Lia, Shenggui Zhang (2016)

Discussiones Mathematicae Graph Theory

Similarity:

Let G be a graph on n vertices. A vertex of G with degree at least n/2 is called a heavy vertex, and a cycle of G which contains all the heavy vertices of G is called a heavy cycle. In this note, we characterize graphs which contain no heavy cycles. For a given graph H, we say that G is H-heavy if every induced subgraph of G isomorphic to H contains two nonadjacent vertices with degree sum at least n. We find all the connected graphs S such that a 2-connected graph G being S-heavy implies...

Large Degree Vertices in Longest Cycles of Graphs, I

Binlong Li, Liming Xiong, Jun Yin (2016)

Discussiones Mathematicae Graph Theory

Similarity:

In this paper, we consider the least integer d such that every longest cycle of a k-connected graph of order n (and of independent number α) contains all vertices of degree at least d.

On hypergraphs of girth five.

Lazebnik, Felix, Verstraëte, Jacques (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Star-Cycle Factors of Graphs

Yoshimi Egawa, Mikio Kano, Zheng Yan (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A spanning subgraph F of a graph G is called a star-cycle factor of G if each component of F is a star or cycle. Let G be a graph and f : V (G) → {1, 2, 3, . . .} be a function. Let W = {v ∈ V (G) : f(v) = 1}. Under this notation, it was proved by Berge and Las Vergnas that G has a star-cycle factor F with the property that (i) if a component D of F is a star with center v, then degF (v) ≤ f(v), and (ii) if a component D of F is a cycle, then V (D) ⊆ W if and only if iso(G − S) ≤ Σx∈S...