### Ternary constant weight codes.

Östergård, Patric R.J., Svanström, Mattias (2002)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Östergård, Patric R.J., Svanström, Mattias (2002)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Ward, Harold (2001)

Serdica Mathematical Journal

Similarity:

This paper surveys parts of the study of divisibility properties of codes. The survey begins with the motivating background involving polynomials over finite fields. Then it presents recent results on bounds and applications to optimal codes.

Landjev, Ivan, Haralambiev, Kristiyan (2007)

Serdica Journal of Computing

Similarity:

In 1965 Levenshtein introduced the deletion correcting codes and found an asymptotically optimal family of 1-deletion correcting codes. During the years there has been a little or no research on t-deletion correcting codes for larger values of t. In this paper, we consider the problem of finding the maximal cardinality L2(n;t) of a binary t-deletion correcting code of length n. We construct an infinite family of binary t-deletion correcting codes. By computer search, we construct t-deletion...

Velikova, Evgeniya, Bojilov, Asen (2008)

Serdica Journal of Computing

Similarity:

Constacyclic codes with one and the same generator polynomial and distinct length are considered. We give a generalization of the previous result of the first author [4] for constacyclic codes. Suitable maps between vector spaces determined by the lengths of the codes are applied. It is proven that the weight distributions of the coset leaders don’t depend on the word length, but on generator polynomials only. In particular, we prove that every constacyclic code has the same weight distribution...

Gashkov, Igor, Larsson, Henrik (2007)

Serdica Journal of Computing

Similarity:

A new class of binary constant weight codes is presented. We establish new lower bound and exact values on A(n1 +n2; 2(a1 +a2); n2) ≥ min {M1;M2}+1, if A(n1; 2a1; a1 +b1) = M1 and A(n2; 2b2; a2 +b2) = M2, in particular, A(30; 16; 15) = 16 and A(33; 18; 15) = 11.

Gashkov, I., Taub, D. (2007)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Bogdanova, Galina (2000)

Serdica Mathematical Journal

Similarity:

This work was partially supported by the Bulgarian National Science Fund under Grant I–618/96. Optimal ternary constant-weight lexicogarphic codes have been constructed. New bounds for the maximum size of ternary constant-weight codes are obtained. Tables of bounds on A3 (n, d, w) are given for d = 3, 4, 6.

Yankov, Nikolay (2011)

Union of Bulgarian Mathematicians

Similarity:

Николай Янков - Класифицирани са с точност до еквивалетност всички оптимални двоични самодуални [62, 31, 12] кодове, които притежават автоморфизъм от ред 7 с 8 независими цикъла при разлагане на независими цикли. Използвайки метода за конструиране на самодуални кодове, притежаващи автоморфизъм от нечетен прост ред е доказано, че съществуват точно 8 нееквивалентни такива кода. Три от получените кодове имат тегловна функция, каквато досега не бе известно да съществува. We...

King, Oliver D. (2003)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Britz, Thomas (2002)

The Electronic Journal of Combinatorics [electronic only]

Similarity:

Dontcheva, Radinka (2001)

Serdica Mathematical Journal

Similarity:

∗ This work was supported in part by the Bulgarian NSF under Grant MM-901/99 In this paper we prove that up to equivalence there exist 158 binary [70, 35, 12] self-dual and 119 binary [72, 36, 12] self-dual doubly-even codes all of which have an automorphism of order 23 and we present their construction. All these codes are new.