The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A note of the Torelli spaces of non-orientable compact Klein surfaces.”

Lifting di-analytic involutions of compact Klein surfaces to extended-Schottky uniformizations

Rubén A. Hidalgo (2011)

Fundamenta Mathematicae

Similarity:

Let S be a compact Klein surface together with a di-analytic involution κ: S → S. The lowest uniformizations of S are those whose deck group is an extended-Schottky group, that is, an extended Kleinian group whose orientation preserving half is a Schottky group. If S is a bordered compact Klein surface, then it is well known that κ can be lifted with respect to a suitable extended-Schottky uniformization of S. In this paper, we complete the above lifting property by proving that if S...

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.

Surfaces with prescribed Weingarten operator

Udo Simon, Konrad Voss, Luc Vrancken, Martin Wiehe (2002)

Banach Center Publications

Similarity:

We investigate pairs of surfaces in Euclidean 3-space with the same Weingarten operator in case that one surface is given as surface of revolution. Our local and global results complement global results on ovaloids of revolution from S-V-W-W.

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Similarity:

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...

A note on a theorem of Xiao Gang.

Margarita Mendes Lopes (2004)

Collectanea Mathematica

Similarity:

In 1985 Xiao Gang proved that the bicanonical surface of a complex surface S of general type with p2(S) > 2 is not composed of a pencil. In this note a new proof of this theorem is presented.

Lorentzian isothermic surfaces and Bonnet pairs

M. A. Magid (2004)

Annales Polonici Mathematici

Similarity:

Lorentzian surfaces in Lorentz three-space are studied using an indefinite version of the quaternions. A classification theorem for Bonnet pairs in Lorentz three-space is obtained.