Closure operators, monomorphisms and epimorphisms in categories of groups
Gabriele Castellini (1986)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Gabriele Castellini (1986)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Yaroslav Kopylov (2004)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Temple H. Fay (1981)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Pavel Jambor (1973)
Czechoslovak Mathematical Journal
Similarity:
Temple H. Fay, Keith A. Hardie, Peter J. Hilton (1989)
Publicacions Matemàtiques
Similarity:
A new proof is given of the connecting homomorphism.
Hiller, Howard (1977)
Portugaliae mathematica
Similarity:
Hans-Joachim Baues, Teimuraz Pirashvili (2005)
Extracta Mathematicae
Similarity:
Square groups are gadgets classifying quadratic endofunctors of the category of groups. Applying such a functor to the Kan simplicial loop group of the 2-dimensional sphere, one obtains a one-connected three-type. We consider the problem of characterization of those three-types X which can be obtained in this way. We solve this problem in some cases, including the case when π(X) is a finitely generated abelian group. The corresponding stable problem is solved completely.