Exact couples in a Raïkov semi-abelian category

Yaroslav Kopylov

Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)

  • Volume: 45, Issue: 3, page 162-178
  • ISSN: 1245-530X

How to cite

top

Kopylov, Yaroslav. "Exact couples in a Raïkov semi-abelian category." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.3 (2004): 162-178. <http://eudml.org/doc/91682>.

@article{Kopylov2004,
author = {Kopylov, Yaroslav},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {3},
pages = {162-178},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Exact couples in a Raïkov semi-abelian category},
url = {http://eudml.org/doc/91682},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Kopylov, Yaroslav
TI - Exact couples in a Raïkov semi-abelian category
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 3
SP - 162
EP - 178
LA - eng
UR - http://eudml.org/doc/91682
ER -

References

top
  1. [1] C. Bănică and N. Popescu, Sur les catégories préabéliennes, Rev. Roumaine Math. Pures Appl.10 (1965), 621-633. MR194488
  2. [2] A. Bouarich, Suites exactes en cohomologie bornée réelle des groupes discrets, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), no. 11, 1355-1359. Zbl0833.57023MR1338286
  3. [3] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal.12 (2002), no. 2, 219—280. Zbl1006.22010MR1911660
  4. [4] I. Bucur and A. Deleanu, Introduction to the theory of categories and functors, Pure and Applied Mathematics, XIX, Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney, 1968. Zbl0197.29205MR236236
  5. [5] B. Eckmann and P.J. Hilton, Exact couples in an abelian category, J. Algebra3 (1966), 38-87. Zbl0178.34306MR191937
  6. [6] B. Eckmann and P.J. Hilton, Commuting limits with colimits, J. Algebra11 (1969), 116-144. Zbl0164.01301MR233865
  7. [7] S. Eilenberg and J.C. Moore, Limits and spectral sequences, Topology1 (1962), 1-23. Zbl0104.39603MR148723
  8. [8] P. Freyd, Abelian categories. An introduction to the theory of functors, Harper's Series in Modern MathematicsHarper & Row, Publishers, New York, 1964. Zbl0121.02103MR166240
  9. [9] N.V. Glotko and V.I. Kuz'minov, On the cohomology sequence in a semiabelian category, Sibirsk. Mat. Zh.43 (2002), no. 1, 41-50; English translation in: Siberian Math. J.43 (2002), no. 1, 28-35. Zbl1009.18011MR1888116
  10. [10] G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, Category theory 1999 (Coimbra), J. Pure Appl. Algebra168 (2002), no. 2-3, 367-386. Zbl0993.18008MR1887164
  11. [11] Ya. A. Kopylov and V.I. Kuz'minov, On the Ker-Coker sequence in a semi-abelian category, Sibirsk. Mat. Zh.41 (2000), no. 3, 615-624; English translation in: Siberian Math. J.41 (2000), no. 3, 509-517. Zbl0952.18003MR1778676
  12. [12] Ya. A. Kopylov and V.I. Kuz'minov, Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category, Sib. Adv. Math.13 (2003), no. 3. Zbl1046.18010MR2028407
  13. [13] V.I. Kuz'minov and A. Yu. Cherevikin, Semiabelian categories, Sibirsk. Mat. Zh.13 (1972), no. 6, 1284-1294; English translation in: Siberian Math. J.13 (1972), no 6, 895-902. Zbl0264.18005MR332926
  14. [14] W.S. Massey, Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56, (1952), 363-396. Zbl0049.24002MR52770
  15. [15] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, 1758, Springer-Verlag, Berlin, 2001. Zbl0967.22006MR1840942
  16. [16] G.A. Noskov, The Hochschild-Serre spectral sequence for bounded cohomology, Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), 613—629, Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992. Zbl0773.20020MR1175809
  17. [17] N. Popescu and L. Popescu, Theory of categories, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1979. Zbl0496.18001MR538276
  18. [18] F. Prosmans, Derived projective limits of topological abelian groups, J. Funct. Anal.162 (1999), no. 1, 135-177. Zbl0916.22001MR1674550
  19. [19] F. Prosmans, Derived limits in quasi-abelian categories, Bull. Soc. Roy. Sci. Liège68 (1999), no. 5-6, 335-401. Zbl0959.18006MR1743618
  20. [20] F. Prosmans, Derived categories for functional analysis, Publ. Res. Inst. Math. Sci.36 (2000), no. 1, 19-83. Zbl0973.46069MR1749013
  21. [21] D.A. Raĭkov, Semiabelian categories, Dokl. Akad. Nauk SSSR188 (1969), 1006-1009; English translation in Soviet Math. Dokl.1969. V. 10. P. 1242-1245. Zbl0204.33501MR255639
  22. [22] W. Rump, *-modules, tilting, and almost abelian categories, Comm. Algebra29 (2001), no. 8, 3293-3325; Erratum (Misprints generated via electronic editing): Comm. Algebra30 (2002), 3567-3568. Zbl1115.18004MR1849488
  23. [23] W. Rump, Almost abelian categories, Cahiers Topologie Géom. Différentielle Catég.42 (2001), no. 3, 163—225. Zbl1004.18009MR1856638
  24. [24] J.-P. Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.) (1999), no. 76. Zbl0926.18004MR1779315
  25. [25] R. Succi Cruciani, Sulle categorie quasi abeliane, Rev. Roumaine Math. Pures Appl.18 (1973), 105-119. Zbl0278.18006MR382394
  26. [26] J. H. C. Whitehead, TheG-dual of a semi-exact couple, Proc. London Math. Soc.3 (1953), 385-416. Zbl0052.39801MR60826

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.