Exact couples in a Raïkov semi-abelian category
Cahiers de Topologie et Géométrie Différentielle Catégoriques (2004)
- Volume: 45, Issue: 3, page 162-178
- ISSN: 1245-530X
Access Full Article
topHow to cite
topKopylov, Yaroslav. "Exact couples in a Raïkov semi-abelian category." Cahiers de Topologie et Géométrie Différentielle Catégoriques 45.3 (2004): 162-178. <http://eudml.org/doc/91682>.
@article{Kopylov2004,
author = {Kopylov, Yaroslav},
journal = {Cahiers de Topologie et Géométrie Différentielle Catégoriques},
language = {eng},
number = {3},
pages = {162-178},
publisher = {Dunod éditeur, publié avec le concours du CNRS},
title = {Exact couples in a Raïkov semi-abelian category},
url = {http://eudml.org/doc/91682},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Kopylov, Yaroslav
TI - Exact couples in a Raïkov semi-abelian category
JO - Cahiers de Topologie et Géométrie Différentielle Catégoriques
PY - 2004
PB - Dunod éditeur, publié avec le concours du CNRS
VL - 45
IS - 3
SP - 162
EP - 178
LA - eng
UR - http://eudml.org/doc/91682
ER -
References
top- [1] C. Bănică and N. Popescu, Sur les catégories préabéliennes, Rev. Roumaine Math. Pures Appl.10 (1965), 621-633. MR194488
- [2] A. Bouarich, Suites exactes en cohomologie bornée réelle des groupes discrets, C. R. Acad. Sci. Paris Sér. I Math.320 (1995), no. 11, 1355-1359. Zbl0833.57023MR1338286
- [3] M. Burger and N. Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal.12 (2002), no. 2, 219—280. Zbl1006.22010MR1911660
- [4] I. Bucur and A. Deleanu, Introduction to the theory of categories and functors, Pure and Applied Mathematics, XIX, Interscience Publication John Wiley & Sons, Ltd., London-New York-Sydney, 1968. Zbl0197.29205MR236236
- [5] B. Eckmann and P.J. Hilton, Exact couples in an abelian category, J. Algebra3 (1966), 38-87. Zbl0178.34306MR191937
- [6] B. Eckmann and P.J. Hilton, Commuting limits with colimits, J. Algebra11 (1969), 116-144. Zbl0164.01301MR233865
- [7] S. Eilenberg and J.C. Moore, Limits and spectral sequences, Topology1 (1962), 1-23. Zbl0104.39603MR148723
- [8] P. Freyd, Abelian categories. An introduction to the theory of functors, Harper's Series in Modern MathematicsHarper & Row, Publishers, New York, 1964. Zbl0121.02103MR166240
- [9] N.V. Glotko and V.I. Kuz'minov, On the cohomology sequence in a semiabelian category, Sibirsk. Mat. Zh.43 (2002), no. 1, 41-50; English translation in: Siberian Math. J.43 (2002), no. 1, 28-35. Zbl1009.18011MR1888116
- [10] G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, Category theory 1999 (Coimbra), J. Pure Appl. Algebra168 (2002), no. 2-3, 367-386. Zbl0993.18008MR1887164
- [11] Ya. A. Kopylov and V.I. Kuz'minov, On the Ker-Coker sequence in a semi-abelian category, Sibirsk. Mat. Zh.41 (2000), no. 3, 615-624; English translation in: Siberian Math. J.41 (2000), no. 3, 509-517. Zbl0952.18003MR1778676
- [12] Ya. A. Kopylov and V.I. Kuz'minov, Exactness of the cohomology sequence corresponding to a short exact sequence of complexes in a semiabelian category, Sib. Adv. Math.13 (2003), no. 3. Zbl1046.18010MR2028407
- [13] V.I. Kuz'minov and A. Yu. Cherevikin, Semiabelian categories, Sibirsk. Mat. Zh.13 (1972), no. 6, 1284-1294; English translation in: Siberian Math. J.13 (1972), no 6, 895-902. Zbl0264.18005MR332926
- [14] W.S. Massey, Exact couples in algebraic topology. I, II, Ann. of Math. (2) 56, (1952), 363-396. Zbl0049.24002MR52770
- [15] N. Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics, 1758, Springer-Verlag, Berlin, 2001. Zbl0967.22006MR1840942
- [16] G.A. Noskov, The Hochschild-Serre spectral sequence for bounded cohomology, Proceedings of the International Conference on Algebra, Part 1 (Novosibirsk, 1989), 613—629, Contemp. Math., 131, Part 1, Amer. Math. Soc., Providence, RI, 1992. Zbl0773.20020MR1175809
- [17] N. Popescu and L. Popescu, Theory of categories, Martinus Nijhoff Publishers, The Hague; Sijthoff & Noordhoff International Publishers, Alphen aan den Rijn, 1979. Zbl0496.18001MR538276
- [18] F. Prosmans, Derived projective limits of topological abelian groups, J. Funct. Anal.162 (1999), no. 1, 135-177. Zbl0916.22001MR1674550
- [19] F. Prosmans, Derived limits in quasi-abelian categories, Bull. Soc. Roy. Sci. Liège68 (1999), no. 5-6, 335-401. Zbl0959.18006MR1743618
- [20] F. Prosmans, Derived categories for functional analysis, Publ. Res. Inst. Math. Sci.36 (2000), no. 1, 19-83. Zbl0973.46069MR1749013
- [21] D.A. Raĭkov, Semiabelian categories, Dokl. Akad. Nauk SSSR188 (1969), 1006-1009; English translation in Soviet Math. Dokl.1969. V. 10. P. 1242-1245. Zbl0204.33501MR255639
- [22] W. Rump, *-modules, tilting, and almost abelian categories, Comm. Algebra29 (2001), no. 8, 3293-3325; Erratum (Misprints generated via electronic editing): Comm. Algebra30 (2002), 3567-3568. Zbl1115.18004MR1849488
- [23] W. Rump, Almost abelian categories, Cahiers Topologie Géom. Différentielle Catég.42 (2001), no. 3, 163—225. Zbl1004.18009MR1856638
- [24] J.-P. Schneiders, Quasi-abelian categories and sheaves, Mém. Soc. Math. Fr. (N.S.) (1999), no. 76. Zbl0926.18004MR1779315
- [25] R. Succi Cruciani, Sulle categorie quasi abeliane, Rev. Roumaine Math. Pures Appl.18 (1973), 105-119. Zbl0278.18006MR382394
- [26] J. H. C. Whitehead, TheG-dual of a semi-exact couple, Proc. London Math. Soc.3 (1953), 385-416. Zbl0052.39801MR60826
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.