On subgraphs induced by transversals in vertex-partitions of graphs.
Axenovich, Maria (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Axenovich, Maria (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Axenovich, Maria (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Niessen, Thomas (2001)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Axenovich, Maria, Martin, Ryan (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Caro, Yair, Yuster, Raphael (2003)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nedialkov, Evgeni, Nenov, Nedyalko (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Yuster, Raphael (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Jean-Sébastien Sereni, Zelealem B. Yilma (2013)
Discussiones Mathematicae Graph Theory
Similarity:
We provide a tight bound on the set chromatic number of a graph in terms of its chromatic number. Namely, for all graphs G, we show that χs(G) > ⌈log2 χ(G)⌉ + 1, where χs(G) and χ(G) are the set chromatic number and the chromatic number of G, respectively. This answers in the affirmative a conjecture of Gera, Okamoto, Rasmussen and Zhang.
Alon, Noga, Sudakov, Benny (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Timmons, Craig (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Wayne Goddard, Honghai Xu (2016)
Discussiones Mathematicae Graph Theory
Similarity:
Given a coloring of the vertices of a graph G, we say a subgraph is rainbow if its vertices receive distinct colors. For a graph F, we define the F-upper chromatic number of G as the maximum number of colors that can be used to color the vertices of G such that there is no rainbow copy of F. We present some results on this parameter for certain graph classes. The focus is on the case that F is a star or triangle. For example, we show that the K3-upper chromatic number of any maximal...
Bodlaender, Hans L., Wolle, Thomas, Koster, Arie M.C.A. (2006)
Journal of Graph Algorithms and Applications
Similarity:
Xueliang Li, Yongtang Shi (2013)
Discussiones Mathematicae Graph Theory
Similarity:
A vertex-colored graph is rainbow vertex-connected if any two vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex-connection of a connected graph G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertexconnected. It was proved that if G is a graph of order n with minimum degree δ, then rvc(G) < 11n/δ. In this paper, we show that rvc(G) ≤ 3n/(δ+1)+5 for [xxx] and n ≥ 290, while rvc(G) ≤ 4n/(δ...