The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Bers fiber spaces.”

A family of M-surfaces whose automorphism groups act transitively on the mirrors.

Adnan Melekoglu (2000)

Revista Matemática Complutense

Similarity:

Let X be a compact Riemmann surface of genus g > 1. A symmetry T of X is an anticonformal involution. The fixed point set of T is a disjoint union of simple closed curves, each of which is called a mirror of T. If T fixes g +1 mirrors then it is called an M-symmetry and X is called an M-surface. If X admits an automorphism of order g + 1 which cyclically permutes the mirrors of T then we shall call X an M-surface with the M-property. In this paper we investigate those M-surfaces...

Automorphism groups of rational elliptic surfaces with section and constant J-map

Tolga Karayayla (2014)

Open Mathematics

Similarity:

In this paper, the automorphism groups of relatively minimal rational elliptic surfaces with section which have constant J-maps are classified. The ground field is ℂ. The automorphism group of such a surface β: B → ℙ1, denoted by Au t(B), consists of all biholomorphic maps on the complex manifold B. The group Au t(B) is isomorphic to the semi-direct product MW(B) ⋊ Aut σ (B) of the Mordell-Weil groupMW(B) (the group of sections of B), and the subgroup Aut σ (B) of the automorphisms preserving...

On ovals on Riemann surfaces.

Grzegorz Gromadzki (2000)

Revista Matemática Iberoamericana

Similarity:

We prove that k (k ≥ 9) non-conjugate symmetries of a Riemann surface of genus g have at most 2g - 2 + 2(9 - k) ovals in total, where r is the smallest positive integer for which k ≤ 2. Furthermore we prove that for arbitrary k ≥ 9 this bound is sharp for infinitely many values of g.