The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Asymptotic analysis to a phase-field model with a nonsmooth memory kernel.”

Homogenization of a Conductive-Radiative Heat Transfer Problem

Zakaria Habibi (2012)

ESAIM: Proceedings

Similarity:

This paper focuses on the contribution of the second order corrector in periodic homogenization applied to a conductive-radiative heat transfer problem. Especially, for a heat conduction problem in a periodically perforated domain with a non-local boundary condition modelling the radiative heat transfer, if this model contains an oscillating thermal source and a thermal exchange with the perforations, the second order corrector helps us to model the gradients which appear between the...

Derivation of a homogenized two-temperature model from the heat equation

Laurent Desvillettes, François Golse, Valeria Ricci (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This work studies the heat equation in a two-phase material with spherical inclusions. Under some appropriate scaling on the size, volume fraction and heat capacity of the inclusions, we derive a coupled system of partial differential equations governing the evolution of the temperature of each phase at a macroscopic level of description. The coupling terms describing the exchange of heat between the phases are obtained by using homogenization techniques originating from [D. Cioranescu,...

On the thermal aspect of dynamic contact problems

Christof Eck, Jiří Jarušek (2001)

Mathematica Bohemica

Similarity:

A short survey of available existence results for dynamic contact problems including heat generation and heat transfer is presented.

Exponential decay to partially thermoelastic materials

Jaime E. Muñoz Rivera, Vanilde Bisognin, Eleni Bisognin (2002)

Bollettino dell'Unione Matematica Italiana

Similarity:

We study the thermoelastic system for material which are partially thermoelastic. That is, a material divided into two parts, one of them a good conductor of heat, so there exists a thermoelastic phenomenon. The other is a bad conductor of heat so there is not heat flux. We prove for such models that the solution decays exponentially as time goes to infinity. We also consider a nonlinear case.